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General introduction

Introduction générale

A Mise en contexte et problématique

Le développement actuel des nanotechnologies implique de plus en plus des surfaces
nanostructurées avec différents matériaux. A titre d’exemple, des capteurs (bio)chimiques
classiques tels que les capteurs a résonance de plasmon de surface et les capteurs a base de
transistors a effet de champ, ont éte atteint leur limite intrinseque de sensibilité, et ne sont pas
utilisables pour détecter des traces de substances chimiques ou d’especes biomoléculaires.
Depuis des années, les nanotechnologies permettent de faire évoluer les performances de ces
capteurs, en réduisant les dimensions des €léments de détection (transducteurs) utilisés dans
ces capteurs (Figure G.1). Les capteurs SPR classiques s’appuyaient sur la fabrication d’une
couche mince d’or continu d’environ 48 nm d’épaisseur. En structurant la couche métallique
pour former des ilots d’or 2D ou 3D, il est possible d’augmenter 1’intensit¢ du champ
électromagnétique par unité de surface sondée, et de rendre le capteur plus sensible[1], [2] ou
plus versatile[3], [4]. De méme, les structures nanoélectroniques développées avec les
technologies actuelles permettent d’étre sensible a des variations de quelques centaines de
charges électriques seulement. Ces performances sont par exemple explorées avec les
structures FDSOI 28 nm de la société STMicrolectronics[5]-[7].

m) molécules ch ﬁ) \

récepteur
o P

récepteur 4m '/
transducteur 4m

Maasm [ Iy nanotransducteur

substrate substrate

FrYTTY 'Yy

\_ W AN ¥ J

Figure 1.1 Influence théorique de la dimension d'un transducteur sur l'intensité des signaux d'un
biocapteur.

Pourtant, alors que ces nanotransducteurs semblent intrinsequement plus performants que des
transducteurs de plus grande taille, leur utilisation n’est utile que si les molécules cibles a
détecter sont capturées sur les zones sensibles du capteur. Toute molécule cible adsorbée en
un autre site du dispositif (substrat, canal fluidique...) ne peut pas contribuer au signal et
apporter d’information utile pour la détection des cibles. Pour bénéficier de I’amplification
physique potentiellement apportée par I’échelle nanométrique d’un transducteur, et détecter
des cibles présentes a faible concentration dans un milieu de mesure, il est nécessaire de
maximiser la capture de cibles (Figure G.2). Cette maximisation peut passer par plusieurs
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General introduction

approches, comme par exemple le transport actif des cibles vers le transducteur (ex: fluidique,
ondes acoustiques, diélectrophorese)[8] ou la fonctionnalisation sélective de surfaces.

/(1) ) /(2) ) 3)

cibles

LTI I T 1 FTT *W rYy *H
surface passivée

nanotransducteur
T T ey

K Faible signal / \ Faible signal / \ Signal fort ~/

Figure 1.2 Influence des interactions moléculaires sur les performances globales d'un biocapteur
comportant un nanotransducteur.

Le présent travail est centré sur la question de la fonctionnalisation sélective (ou
« orthogonale » de surfaces composées de différents matériaux. L’objectif central est
d’étudier dans quelle mesure il est possible de modifier des matériaux différents d’un méme
substrat, avec des réactions de surfaces spécifiques de chacun des matériaux, en vue de
conférer a chaque matériau des propriétés particuliéres. Dans notre exemple lié aux
nanotransducteurs, on souhaite par exemple pouvoir immobiliser une couche de molécules
sonde formant un récepteur sur le nanotransducteur, tout en conférant aux autres matériaux a
repousser les cibles moléculaires de facon efficace : il est donc nécessaire de fixer des
fonctions chimiques et/ou des molécules organiques différentes sur les différents matériaux de
la surface, et si possible avec le moins de mélanges possibles entre les molécules mises en

auvre.

Des travaux sur la fonctionnalisation sélective de surfaces ont déja été menés dans 1’équipe
Chimie & Nanobiotechnologies de I’'INL, pour explorer comment cette approche peut
contribuer a améliorer les performances de capteurs, mais aussi étre employée pour fabriquer
de nanodispositifs avec de nouvelles propriétés, non fabricables en s’appuyant uniquement sur
de la nanofabrication descendante (lithographie + lift-off)[9], [10]. La fonctionnalisation
chimique de surfaces a été¢ d’abord étudiée pour des matériaux homogenes, tels que la silice
ou I’or[11]-[14]. La fonctionnalisation de surfaces composées de différents matériaux a été
explorée dés 1989 dans le groupe de George M. Whitesides, a I’échelle macroscopique[15].

En vue de fabriquer différents capteurs et biopuces, 1’équipe Chimie & Nanobiotechnologies a
étudié différentes voies de modification de matériaux homogéne (verre, silice)[16], [17]. Par
la suite, en vue de fabriquer des systémes de maniére plus souples, I’équipe a commencé a
étudier le comportement de dispositifs multimatériaux, par exemple a base de silice et d’or, ou
de silice et nitrure[18].
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Les travaux sur la fonctionnalisation orthogonale de

surfaces a deux matériaux ont €té lancés dans 1’équipe avec (1) Q)
la thése de Francisco Palazon  (Fonctionnalisations silane thiol
orthogonales de surface: rappel des travaux dans I’équipe @ @
Chimie & Nanobiotechnologies)[19], qui s’est appuyé sur

deux réactions maitrisées séparément dans 1’équipe : la Si0, Au
silanisation de la silice (1) et la formation de couche
d’alkylthiol sur or (2) (Figure G.3).

(&) (C))

Y . L g . silane thiol
Il a d’abord été possible de vérifier que des silanes ' i

n’interagissent pas significativement avec de 1’or (3), et
que des alkylthiols ne se fixent pas de maniere stable a de
la silice (4) (Figure G.3).

Dans un deuxiéme temps, il a été démontré qu’il est possible de faire ()
réagir simultanément, en une étape, un mélange de silanes et de thiols, sur  [silane + thiol]
un substrat composé d’or et de silice : dans les conditions adéquates, les @ @
silanes se greffent spécifiquement a la silice et les thiols spécifiqguement a ,T
I’or (Figure G.3). Sio,

Figure 1.3 Fonctionnalisation
orthogonale de substrats or +
silice: résumé des acquis déja
étudiés dans I'équipe.
Ces ¢études ont été menées d’abord sur des substrats macroscopiques, ensuite sur des substrats
de silice avec des motifs d’or micrométriques, et enfin des substrats de silice avec des motifs

de quelques centaines de nanometres de taille caractéristique[20], [21].

L’efficacité de la fonctionnalisation a été mesurée a la fois par analyses spectroscopiques (ex:
imagerie ToF-SIMS, imagerie XPS), et par capture sélective de nanoparticules sur des motifs,
avec analyse des particules capturées par microscopie €lectronique a balayage. La présente
thése a été menée dans la continuité du travail ci-dessus. Les savoir-faire pour fonctionnaliser
sélectivement silice et or ont été utilisés, et un troisieme matériau a été ajouté : le titanate de
tungsténe (TiW). Il a été choisi pour enrichir notre bibliothéque car TiW est un matériau
fortement utilisé et maitrisé dans la fabrication de composants nanoélectroniques[22]-[25]. Il
est possible d’obtenir des wafers de TiW fabriqués de maniere répétable, et le TiW présente
un comportement stable. La société STMicrolectronics, qui explore avec I’'INL de nouveaux
capteurs chimiques, a mis a la disposition de 1’équipe un wafer de TiW, pour explorer le
comportement de ce materiau en termes de fonctionnalisation de surface.
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B Questions de recherche

Le travail réalisé au cours de ce doctorat est centré sur les questions suivantes :

(1) Comment se comporte le TiW vis-a-vis de différentes molécules organiques, en termes de
fonctionnalisation chimique de surface ?

(2) Est-il possible de procéder a des fonctionnalisations chimiques orthogonal d’un substrat
comportant du TiW et d’autres matériaux en surface : TIW et or ; TiW, or et silice.

C Objectifs du projet de recherche

Les travaux menés pendant les trois années de cette these ont impliqué les sujets résumes ci-
dessous :

Etudier le comportement d’un substrat de (1) (2) 3)
TiW planaire et homogene, vis-a-vis de trois silane dopamine

classes de molécules organiques : silane,

catéchol (dopamine), acide phosphonique @ @ @
(AP). Caracteériser la formation des couches

organiques formées avec ces trois molécules, - - -
ainsi que leur stabilité respective (Figure G.4).

Figure 1.4 Fonctionnalisation de TiW avec
différentes molécules organiques.

Sur un substrat a deux matériaux TiW + or, étudier dans (2)
quelles conditions il est possible de greffer les acides AP
phosphoniques (AP) sur TiW, des thiols sur ’or, sans que ?@
les thiols ne se fixent sur TiW ni les acides phosphoniques “

sur TiW (Figure G.5).

Figure 1.5 Fonctionnalisation

orthogonale de surfaces or + TiW.
Sur un substrat a trois matériaux TiW + or +
SiO,, étudier dans quelles conditions il est (1) 2) 3)
possible de fonctionnaliser sélectivement Tiw, thiol AP _ silane
or et silice avec respectivement Acide @ . 9 "-'.f?). :
Phosphonique (AP), thiol et silane. Evaluer les \ 7 %
contaminations  croisées, et identifier ﬂ ﬂ ﬂ
maniére la plus appropriée d’obtenir trois

réactions de fonctionnalisation orthogonales (Figure G.6).

Figure 1.6 Fonctionnalisation orthogonale
de substrats or + silice + TiW.
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D Plan du mémoire de these

Le présent mémoire de thése est structuré en quatre chapitres :

Le chapitre 1 présente un état de I’art sur différentes approches de fonctionnalisation
chimique localisée a la surface de matériaux inorganiques. Nous montrons comment il est
possible de localiser des fonctions chimiques souhaitées en des zones spatialement définies a
la surface d’un substrat, en s’appuyant par exemple sur I’irradiation de la surface avec un
faisceau de particules, sur la lithographie souple (« microcontact printing »), les technologies
en champ proche (microscopie a force atomique ou champ proche optique), et I’approche par
fonctionnalisation chimique orthogonale.  Nous comparons ces différentes stratégies
notamment en termes de debit de fabrication, de résolution des motifs, de précision du
positionnement absolu des motifs sur un substrat, et de souplesse d’utilisation. Le travail
réalisé¢ dans la présente thése est centré sur I’approche par fonctionnalisation orthogonale.
Nous présentons les quelques réalisations de fonctionnalisation chimique orthogonale décrites
dans la littérature pour des substrats composés de deux matériaux différents : silice et or.
Nous rappelons notamment les points les plus importants du travail de Francisco Palazon sur

ce sujet, dans I’équipe Chimie et Nanobiotechnologie de I’INL.

Le chapitre 2 présente une étude de la fonctionnalisation chimique de substrats homogénes
planaires de TiW avec les trois molécules suivantes 1) 1’acide 3-aminopropylphosphonique
(3-aminopropylphosphonic acid ou APPA) ; 2) le silane 3-ethoxydimethylsilylpropylamine
(APDMES) ; et le catéchol dopamine (DA). La formation de couches homogénes d’APPA,
APDMES et DA a été étudiée. Les substrats ont été analysés par diffraction X, microscopie a
force atomique (AFM), spectroscopie XPS, spectrométrie de masse d’ion secndaire a temps
de vol (Time-of-flight secondary lon mass spectrometry ou ToF-SIMS), et spectroscopie
infra-rouge en mode réflexion totale atténuée (ATR-FTIR). Nous avons exploré 1’état
chimique des surfaces apres fonctionnalisation avec ces différentes molécules, ainsi que
I’évolution des surfaces fonctionnalisées en fonction de la durée de lavages. Il s'agit a notre
connaissance de la premiére étude sur la fonctionnalisation chimique de surface du TiW.

Le chapitre 3 présente une étude de la fonctionnalisation chimique orthogonale de substrats
de TiW comportant des motifs d’or de dimensions microniques. En nous appuyant des
caractérisations XPS PM-IRRAS, et imagerie ToF-SIMS nous montrons comment les motifs
d’or peuvent étre fonctionnalisés avec un thiol, tandis que le TiW peut étre fonctionnalisé
avec un acide phosphonique. Le travail experimental montre dans quelles conditions il est
possible de rendre ces deux réactions orthogonales. Les surfaces sont ensuite utilisées pour
capturer par interactions électrostatiques des carboxy-nanoparticules. Nous utilisons la
microscopie électronique a balayage pour verifier comment les nanoparticules sont capturées

sur les zones de TiW et les zones d’or. Cette approche nous permet de comparer
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quantitativement la capture des nanoparticules sur or et 1’adsorption non spécifique de
nanoparticules sur TiW.

Dans le chapitre 4, nous étudions le comportement d’un substrat de TiW recouvert de motifs
d’or et de silice, vis-a-vis de trois réactions de fonctionnalisation de surface : la structure est
séquentiellement fonctionnalisée avec un silane, un thiol et un acide phosphonique puis lavée.
Les silanes, comme les acides phosphoniques, possédent une affinité pour les surfaces de TiW
présentant un oxyde natif. Nous explorons dans quelles conditions obtenir une orthogonalité
entre les trois réactions mises en jeu : silanisation de la silice, dép6t du thiol sur I’or, dépot
d’acide phosphonique sur TiW. Les surfaces sont caractérisées par XPS, imagerie ToF-SIMS,
ATR-FTIR et mesure d’angle de contact.
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1 State of the art

1.1 Introduction

Surface chemical functionalization of inorganic materials has been developed for various
applications, such as surface patterning fabrication[1], tissue engineering[2], biosensors[3],
localization of colloidal nano-objects[4] and corrosion inhibition[5]. It can be done in several
ways, for instance:

(1) By electron or ion beams.
(2) Polymers coating.

(3) Formation of an organolayer thanks to the covalent grafting of low molecular weight
molecules.

The molecules that form the organolayer have two main elements: a substrate-binding head
group, and a hydrocarbon chain (spacer). Eventually an additional functional head group is
present at the other end of the spacer allowing the coupling of a molecule or a nano-object.
This terminal function can also limit nonspecific adsorption of undesired molecular species.
The organolayer can be formed from liquid or gas phase onto the solid surface (Figure 1.1).

The most reported reactions are the ones of thiols on gold surfaces and ones of silanes on
silica surfaces though the formation of Au-S bond and Si-O bond, respectively[6]-[9]. Under
well control experimental conditions, the attachment of these molecules can give raise to self-
organized monolayers called self-assembled monolayer (SAM). However, in the literature,
thin layers of low molecular weight molecules are often referred as SAM despite the lack of
proof of self-organization. Here, we call “organolayers” formed from low molecular weight
molecules with a thickness below 5 nm, whether they are organized or not. We focus on the
discussion about the covalent binding of organolayers on oxides and gold in section 1.3.

In parallel, efforts have been devoted to developing localized chemical surface
functionalization allowing for the patterning of surface chemical functionalization. To this
aim, various approaches, such as beam irradiation, microcontact printing, near field
technologies, and electrochemistry have been explored. Alternatively, localized chemical
functionalization of multi-materials patterned substrate can be obtained using selected
grafting reactions to grow different organolayers on the different materials. Such approach
will be called later “orthogonal chemical functionalization” in this thesis.

27



Chapter 1. State of the art

./ Functional headgroup
\. Spacer chain
./ Substrate-binding headgroup
b

a C

Figure 1.1 Ideal representation of organolayers on a solid surface. Molecules from a liquid or gas
phase (a) are chemically bonded onto the substrate by their substrate-specific headgroup (b) and self-
arrange through Van der Waals interactions to form a pseudo-crystalline monolayer (c).

In the following we will first review different methodologies that have been explored to
achieve localized surface modification. Orthogonal functionalization is based on material
specific reactions. Therefore, formation of organolayers on various individual materials is first
discussed and then, the different methods reported for orthogonal surface modifications of
multi-material substrates is reviewed. Finally, we will recall the state of the art of the
chemical functionalization of titanium tungsten alloy (TiW). Its orthogonal functionalization
on multi-material substrates is discussed.

1.2 Localized chemical functionalization approaches

In the following we focus mainly on the local formation of organolayers. Among the various
processes allowing for local surface functionalization, writing of chemical features on the
substrate seems a straightforward approach. These can be achieved either by the introduction
of reacting groups at the surface of the material allowing for the subsequent grafting reaction
(for example local introduction of silanol groups for silinization) or the local promotion or
degradation of the organolayers by irradiation, mechanical removal or photochemistry.

Among the different techniques employed to these aims one can consider the use of focused
incident particle beam (ions, electrons) or photons (lasers or masking techniques). Substrate
modifications can also be triggered locally by near field techniques (SNOM, AFM
lithography, nanoimprint, thermolithography) or microcontact printing. In the following, we
will review these techniques. Localized electrochemical reactions such as polypyrrole
formation on metallic electrodes will not be detailed here, since it implies know how (see
Roupioz's group at SYMMES) that are too far from our research group's knowledge to invest
energy and work for being implemented correctly. It is considered out of scope of the present
work.

1.2.1 Beam irradiation

Focused ion or electron beams can be used to write patterns directly on a substrate to either

“pre-functionalize” the substrate (introduce reaction groups) or to remove locally an already-
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formed organolayer. Incident particles are generally electrons with incident energies ranking
typically in the 10eV~100KeV range. Indeed, in this range of energies, the electron beams
lithography has to be compared with bond energies and the abilities of such electron to
promote the formation or destruction of chemical bonds.

For the substrates pre-functionalized by organolayers, electron-beam lithography (EBL)
techniques are promising for directly writing patterns on the organolayers through removing
the molecules from the surface. EBL patterns process on organolayers is shown in Figure 1.2.
Patterning is either due to the destruction of the functional group at the terminus of the
molecules in the organolayers, thereby preventing subsequent binding of a target molecule to
the exposed area, or to backfilling an exposed area with a chemically active molecule in an
otherwise inert molecules, thereby creating local binding sites.

Organic temples

l Electron-beam lithography (EBL)

EBL EBL

Organic temples

l Remove molecules by EBL

Patterns

Figure 1.2 Ideal representation of electron-beam lithography (EBL) process.

Electron beam technique has been used for fabrication of organosilane patterns on silica with
ultrahigh resolution (from 10 nm to a single molecule scale)[10]-[14]. On thiols
functionalized gold surfaces, nanometer scale patterns have also be obtained[15], [16]. It is
worth noting that A. Golzhduser et al. reported the local conversion of nitro terminated
organolayers to amino groups thanks to electron beam allowing for their subsequent coupling
with carboxylic functions[17]-[20].
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1.2.2 Micro-contact printing

Microcontact printing method was first developed by G. M. Whitesides et al. in 1993[21].
Microcontact printing uses a stamp to print molecules with sub-micrometric resolution onto a
substrate. The stamp, usually made of polydimethyl siloxane (PDMS) or polyacrylamide
(PAA), is first coated with the desired molecules (ink) and then brought into contact with the
substrate. If the molecular ink interact more strongly with the substrate than with the stamp, it
iIs transferred at the contact regions from the stamp to the substrate (Figure 1.3)[22], [23]. The
resolution and periodicity achievable by microcontact printing are dependent on the young
modulus of the stamp and can range in the few tens of nanometers scale with hard polymers
[24], [25]. For example, microcontact printing of thiols on gold or silanes on glass have been
reported[21], [26]. In addition, this process has also been successfully described for the
printing of proteins[27], [28], polymers[29], [30] and particles[31].

PDMS

Dip in ink solution l

PDMS
1TrLrn ___ _r.r_r

Microcontact printing \

PDMS

Localized transfer ink onto surface -
in

t11

Figure 1.3 Ideal representation of microcontact printing process.
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1.2.3 Near-Field technologies

Similarly to microcontact printing dip pen nanolithography (DPN)[32] can use an AFM tip to
locally deposit the molecules. Thanks to a water meniscus that is formed between AFM tip
and solid substrate, the molecular ink is transported from the tip to the surface, as shown in
Figure 1.4.

AFM Tip

/N

~N \— - Writing Direction

———
\ /
Molecular

Transport —/L Water Meniscus

e // -~
. substrates

Figure 1.4 Ideal representation of AFM dip pen nanolithography process.

\

Alkane thiolates features obtained by DPN onto a gold surface has been reported in the
literature [33]-[35]. For example, F. Stellacci et al. wrote thin lines of mercaptohexadecanoic
acid of nearly 100 nm on gold. The resulting carboxylated functionalized lines allowed for the
attachment of aminated functionalized gold nanoparticles by covalent binding[25]. C. A.
Mirkin et al. reported a similar strategy for the lithography of silazane onto Si/SiOx and
oxidized GaAs substrates. They obtained 100 nm wide lines[36]. DPN can be used to
construct arrays of proteins on functionalized gold and silica substrates[37]-[39]. In addition,
AFM based nanolithography technique can be used to mechanically erase/scratch an
organolayer. Eventually, new molecules can be simultaneously introduced on the “new
formed” areas by either pre-coating the tip or by diffusion of the new molecules from the
medium[40]-[42].

Besides of AFM dip pen lithography, scanning near-field photolithography is another
powerful near-field technology for nanoscale molecular patterns, in which a near-field
scanning optical microscope (SNOM) coupled to a UV laser. Because of the wide range of
photochemical methods available for surface derivatization, scanning near-field
photolithography appears poised to fulfill its promise by combining the power of
photolithography with nanometric spatial resolution for single molecular immobilization and
detection[43], [44].
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1.2.4 Orthogonal chemical functionalization

The above methods aimed mainly at localizing an organolayer at defined areas of a
homogeneous surface. However, if the substrate consists of patterns of different materials,
these materials can be functionalized independently, by choosing molecules with the
appropriate substrate binding head groups. This approach combines top down and bottom-up
approaches. Indeed, the creation of the patterned material substrate is commonly obtained via
conventional technological processes (top-down process: lithography, physical vapor
deposition, chemical vapor deposition, plasma etching...). These materials are selected for the
physical and chemical orthogonal properties. Their specific chemical functionalization is
obtained by taking advantage of the affinity of certain molecular groups toward given
materials (bottom-up process). The method has been termed as ‘‘orthogonal self-assembly
monolayers” by G. M. Whitesides et al.[45], “selective molecular assembly patterning”
(SMAP) by M. Textor et al.[46] and “substrate selective patterning” (SSP) by M. Bergkvist et
al.[47]. Herein, we will use “orthogonal chemical functionalization” to name the method.
Various chemical compounds and substrates have been used:

(1) Metal oxide/silica templates modified with phosphonate and silanes[48].

(2) Au/metal oxide templates functionalized with thiols and phosphonate, amine or carboxylic
acids[49].

(3) Aufsilica templates modified with thiol and silanes[50].

Gold micro and nanostructures on silica is quite common as it may have different applications
in optics and electronics[47]. For example, on plasmonic devices, orthogonal chemical
functionalization may enable the gold structures to trap a target (i.e. nanoparticles,
biomolecules...) from solution while avoiding non-specific adsorption on the rest of the
surface. In our group, F. Palazon et al. developed a single-step orthogonal chemical
functionalization procedures for micro and nanoscale gold features on a silica surfaces[51].
This approach was used to trap streptavidin-coated nanoparticles onto the biotin
functionalized gold nano-antennas structures. The capture yield relative to the nanoantenna
was 68.8% without mixing, while nonspecific adsorption was less than 1%][4].

1.2.5 Comparison of different chemical patterning approaches

We have presented different approaches for localized functionalization on homogeneous or
multi-materials surfaces. These methods can be compared in terms different criteria:
implementation (parallel or serial), resolution (minimum possible feature size), throughput
(total patterned area per unit time), location precision (minimum distance for precise
positioning of a desired feature on a substrate) and versatility (available possibility), as shown
in Table 1.1. In the columns a rough criteria indicator (+, ++, +++) is given of the different
localized methods. Of course, the indicator is dependent on the perspective and goals, and
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includes features such as materials selection, structural organization and ease of use.
Hopefully the summary might help you to grasp a method for your own purposes.

Implementation: Microcontact printing could achieve parallel inking of a stamp followed by
a single printing step on a substrate to form periodic array. Near-field technique (e.g. DPN,
NSOM photochemistry) and photoelectric beam irradiation mainly carry out in serial mode to
pattern the surface step by step. However, new DPN developments have reached massively
parallel patterning with different inks on each tip[52]. For orthogonal chemical
functionalization on multi-materials, the organolayers could be serial or parallel
functionalized on each material.

Throughput: Microcontact printing probably presents highest throughput compared with
other above mentioned techniques as an area of several cm? can be functionalized in quite
short time. The throughput of EBL is about 10-10* um#h[53]. Multi-tip AFM DPN can have
a considerable higher throughput than EBL, which could allow high throughput fabrication
and integration on the cm? scale[52]. For orthogonal chemical functionalization the
throughput could be high, which is mainly based on the size and materials for creating the
patterned substrate.

Resolution: The resolution is related to the throughput. The microcontact printing technique
with higher throughput can hardly reach nanometer features, when the goal is to deposit
molecules on a planar substrate. However, microcontact printing may be used to stamp
molecules on thick patterns implemented on a substrate. In this case, thickness may be more
determinant than the feature characteristic size, and one can imagine it is possible to stamp
very small patterns. EBL can generate periodic patterns with very high resolution under 10
nm. The resolution of orthogonal chemical functionalization is lower than near-field
techniques and EBL in most cases.

Location precision: Near-field technologies can exhibit a location precision defined by the
curvature radius of the tip for DPN, provided that marks have been implemented on substrate.
Microcontact printing location precision may limited by the precision of mechanical
positioning of the stamp, when it is used to stamp molecules on a planar substrate. This
difficulty is overridden when stamp is to be positioned on predefined thick patterns (e.g.
implemented by any lithographic technigue), since molecules are expected to be stamped on
the patterned higher surface and not on the underlying substrate. Orthogonal functionalization
location precision is expected to mainly rely on the quality of the different materials patterns
that have been implemented. The main constraint is related to the quality of the different
surface materials, and the orthogonality of the targeted reactions.

Versatility: Microcontact printing have relatively low versatility, as the same defined stamp
is used on the whole surface for one time. Of course, different stamps having different
patterns or inks can be printed many times onto the whole substrate, which can achieve multi-
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functional surface. EBL and DPN techniques have higher versatility as different shapes and
sizes can be defined directly on the whole substrate. Orthogonal chemical functionalization
could modify a wide range of inorganic materials integrated systems due to the available
functional groups and complex interaction between different surfaces.

. Location .
Implement Resolution | Throughput . Versatility
precision
Microcontact
L Parallel + ++ + + +
printing
Near-field ]
. Serial/Parallel +++ + + ++ + + 4+
techniques
Beam irradiation Serial/Parallel +++ + +++ +++
Orthogonal
chemical Serial/Parallel ++ ++ + + + +++
functionalization

Table 1.1 Comparisons among different chemical patterning approaches (+++ is highest, + is lowest).

1.3 Organolayers functionalization of inorganic surface

Organolayers can be built on a wide range of solid surfaces to tune their physicochemical
properties, or to immobilize molecules for sensing applications. The layer has a 2D structure
and is composed of organic molecules that are spontaneously bound from a liquid or gas
environment onto a solid surface, usually by a covalent bond or a non-covalent bond between
one of the molecule’s headgroups and the surface. The remaining available headgroups,
separated from the former by a spacer chain can be chosen to fulfill a specific function. This
process is therefore referred to as chemical surface functionalization.

1.3.1 Oxides

Oxides can be symbolized as MOy, where M can be a metal (e.g. Al, Ti) or a semiconductor
(e.g. Si). It can also refer to materials that forms native oxides or (-OH) groups upon
activation reactions. In principle, activation (increase of the surface density of metal oxide
moieties) can be obtained in a variety of ways, such as piranha solution, UV/ozone irradiation
and plasma activation. Oxides are appealing, as they are typically not only easily accessible
and thermodynamically stable, but also many of them share the potential for surface
functionalization through the reactivity of surface bound -OH groups as anchoring points for
the formation of densely packed layers (Figure 1.5). The reactions have recently been
reviewed in details[54]. Here we will focus on silane, phosphonate and catechol that have
been used to covalently attach organolayers onto oxides.
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Figure 1.5 Attachment methods and the resulting modified oxide surfaces.

Table 1.2 undertakes a summary on the use of these three reactions on various substrates. In
the first column, the different types of oxide surfaces are indicated. In the remaining columns,
the corresponding references are given for the substrate—organolayer combination. The quality
of the layers includes features such as structural order and long-term stability. It might be
helpful to select an optimal oxide surface-organolayers combination for own purposes.

Oxide Surface Silanes Phosphonates Catechols
Glass [55]-[58] - [59]
SiO2 [58], [60], [61] [62], [63] [64]
TiO» [65]-[68] [67], [69]-[71] [72]-[79]
WOs3 - [80] -
Al,O3 [81]-[84] [85]-[88] [89], [90]
ZnO [91]-[94] [95]-[98] -
Sno; [99]-[102] - -
ITO [103]-[106] [107]-[110] [111]

Col/Cr/steel [112]-[115] [112], [116]-[118] [119]

Table 1.2 Overview of reported substrates—organolayers combinations.
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1.3.1.1 Phosphonic acids
1.3.1.1.1 Phosphonic acids presentation

H. D. Cook et al. reported on the use of phosphonic acids and phosphonates molecule for the
formation of organolayers in 1954[120]. Since, phosphonic acids, phosphonates and
phosphonate esters have become attractive anchoring groups for hydroxylated surfaces,
especially for oxides. The common surface-binding phosphonic groups reported in the
literature to bind onto a metal oxide surface are shown in Table 1.3.

Name and formula

Mechanism

Phosphonic acid[107], [121]

0
I
_P—OH

ROH

Phosphonic acid are soluble in a wide variety of solvent
including water. Depending on the alkyl chain length,
their solubility in water can be limited. Short chain are
highly soluble in water while longer chain are not. The
reaction mechanism is described below.

Ester phosphonate[122]-[124]

0]
I
R— Il’—O—R

(I) R=H, Alkyl

R

Phosphonate esters permit to perform the layer formation
even with short alkyl chain in organic solvent when water
should be avoided. This is the case with oxides that are
soluble in water for example. Furthermore, the electron
donating effect of the alkyl groups, favors the
coordination of the phosphoryl oxygen by an acidic
titanium dioxide site.

Phosphonic dichloride[80]
O
]
P-al
Cl

R

Condensation  between phosphonic dichloride and
tungsten eliminates HCI and forms covalent bonds
between the phosphonate and substrates.

R-— 7z
/P\ R- V
Cl C Hyo P
OHOHOH —— OHO O
U I — l—_——
M M M M M M

Table 1.3 Different phosphonates surface-binding groups.

On Lewis acidic metal oxide surfaces (Figure 1.6, routel), binding originates from initial
coordination of the phosphoryl oxygen atom (P=0) to a Lewis acidic site. Then the P atom
becomes more electrophilic and induces the consecutive heterocondensation with the
neighboring surface hydroxyl groups, resulting in strong covalent P-O-M anchoring. On metal
oxide lacking Lewis acidity the mechanism follow route 2 in Figure 1.6.
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The coordination of phosphoryl oxygen is minimal and the heterocondensation is promoted
by hydrogen bonding between for instance metal hydroxyl and phosphono’s hydroxyl or
[(alkoxy)hydroxyphosphoryl]oxy-’s alkoxy. Heating may accelerate the covalent coupling by
favoring alcohol or water condensation.

Route 1
R R R
b) \O/};\I /?_) O H O 0]
MMM MMM MMM
~ o Route 2
0O, O
R_/ R R_/~- R R/
PO PO -R-OH K
R“-O/ "'-O/H ‘R\O/ O:-'/H - R"‘“O/ (I)
* *
MMM MMM M MM

Figure 1.6 Mechanism of phosphonic acid attachment 1) to Lewis acidic metal oxides and 2) to poorly
Lewis acidic metal oxides.

The presence of the three oxygen atoms of the phosphonates allow monodentate, bidentate, or
tridentate binding modes in combination with possible electrostatic and hydrogen-bonding
interactions (Figure 1.7)[107], [124].

A
P P P
N PETRN PEETIRN

| “OH =11 YOH N R
0 6 0 0@ O
Monodentate Bidentate Tridentate

Figure 1.7 Different bonding modes of a phosphonate unit to a metal oxide surface.

It is difficult to unambiguously identify any single one binding mode present in a system.
However, it is possible to distinguish the presence or absence of some of the binding modes.
Different analysis methods such as nuclear magnetic resonance (NMR) spectroscopy, time-of-
flight secondary mass spectroscopy (TOF-SIMS), polarization modulation-infrared reflection-
adsorption spectroscopy (PM-IRRAS), X-ray photoelectron spectroscopy (XPS), density
functional theory (DFT), were used to better understand the binding modes (Table 1.4).
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M-O-P bond

The M-O-P bond was evidenced by ToF-SIMS and O MAS NMR in
particular in the case of titania. A resonance signal at 6=185 ppm provided
direct evidence for the formation of P-O-Ti linkage. Furthermore, using ToF-
SIMS, characteristic fragments (TiP.Og, TiP2O;H, and TiP3OsH2) confirmed
the formation of P-O-Ti bonds on Ti90/Al6/V4 substrate[125]. XPS O1s peak
also suggest that some of the P-O-H bonds (533 eV) are transformed into P-O-
Ti bonds (531.5 eV)[67].

Binding mode

On titania, using 'O MAS NMR, free residual P=0 and P-OH functionalities
were also detected at 6=113/85ppm suggesting the existence of mono and
bidentate binding mode[126]. Using PM-IRRAS, the presence of strong peaks
corresponding to vp=0) Vibrations in the 1230cm™ region, along with the
diminished peaks between 955 and 930cm™ (P-OH stretching vibrations),
indicated the presence of mainly bidentate bound octadecylphosphonic acid
(ODPA) on ITO surface[127]. However on phenylphosphonic acid (PPA)-
indium zinc oxide (IZO), the absence of vp-ony mode (925 and 939 cm?) and
vp=0) mode (1220 cm™?) indicated that bidentate or tridentate binding were
preferred.[128] On ZnO, the observed shifts of the P=0 and P—O stretches on
IR spectrum after surface anchoring have been modeled by DFT. A multi-
dentate bonding involving the formation of two P—-O—Zn bonds and a strong
P=0-H linkage between the phosphonic head and the surface seems
possible.[129]

Hydrogen
bonding

The H-bonding interactions in adsorbed carboxyalkylphosphonates on TiO,
and ZrO, were measured by *H MAS NMR. The hydrogen-bonding network in
multilayers of the diacids is more ordered but highly perturbed from the bulk
state with the formation of heterodimers rather than homodimers[130].

Table 1.4 Different analysis methods of binding modes.

1.3.1.1.2 Phosphonic acid layer formation: experimental parameters

Phosphonic acid layers can also be formed by adsorption from a vapor-phase reaction or
solution phase. The vapor-phase reaction maybe easily lead to the multilayers formation[131],
[132]. The most common techniques to obtain phosphonate-based monolayers are immersion
or dip coating, from a solution. Immersion times span from a few minutes to a couple of hours
or even days. The concentrations of the phosphonates solution range from 1 mM to 10 mM
and a wide variety of solvents of polar and non-polar have been used: water[133]-[136],
methanol[135]-[137], acetonitrile[136], ethanol[127], [138], [139], THF[63], [117], [125],
[129], [136], acetone[130], [136], TCE[140], pyridine[136], dimethyl sulfoxide[136],
dichloromethane[123], chloroform[140] and toluene[67], [126]. Whether one is preferable to
another seems to depend on which molecule and substrate are used as well as which

38




Chapter 1. State of the art

characteristic is desired. First, the solvents employed for functionalization are dictated by the
solubility of the phosphonate. For example, phosphonic acids with different lengths of alkyl
spacer have different solubility in water and organic solvent. On the other hand, the oxide
should not be dissolved by the solvent. In particular some oxides can be dissolved by aqueous
media. In addition, it has been reported that the nonpolar solvents seems to favor the
interaction between the hydrophilic phosphonate and the hydrophilic oxide. For example, a
study of solvent effects during alkyl phosphonic acid layers on ITO concluded that weak or
negligible interactions of the solvent with the surface promote denser, more stable
monolayers[136]. However phosphonic acids and phosphonates layers formation protocols on
metal oxides involve an annealing process to promote the stable covalent bonding with the
TiO2, Al,Oz and ITO as in the particular case of silica [80], [98], [126], [128], [136], [141],
[142]. The annealing temperature range is from tens to 200 °C. The annealing time is from a
few minutes to many hours.

E. L. Hanson et al. have developed a technique for grafting phosphonic acid films, referred to
as tethering by aggregation and growth (T-BAG) method[62]. The approach includes self-
assembly of weakly physical adsorbed phosphonate on a vertical substrate by slow
evaporation of solvent, and a subsequent thermal annealing step at 140 °C under low humidity
conditions to induce chemisorption of the phosphonic acids onto the substrate. The T-BAG
procedure appears to benefit from some organized aggregation of the dissolved phosphonic
acid at the air-solvent interface and appears to ensure robust chemical bonding in a heating
step. This approach has been used on SiO», ITO or TiO2[125], [127].

1.3.1.1.3 Phosphonic acid layer stability

The stability of phosphonic acids and phosphonates organolayers is crucial for successfully
using these layers to coat medical implants substrates and other biomedical applications. In
general, phosphonic acid surface modifications lead to reproducible and stable layers on a
wide variety of oxides. However, their grafting on SiO, seems to be governed by weak
physical interactions, such as van der Waals interactions and hydrogen bonding, unless an
annealing step is performed. In fact the T-BAG procedure was developed with the aim to
form stable phosphonic acid layers on SiO..

The solvent and its polarity seems also to be crucial for enhancing the interaction between the
polar phosphonate head group and the hydrophilic oxide surface and therefore for favoring the
condensation reaction. The annealing step favors the condensation between the phosphonate
and the hydroxyls. Indeed, the formation of the P-O-M bond is compulsory for the layer
stability. Its energy is in the 3.5 eV/bond range. For comparison, the S-Au bond is 1.7
eV/bond[67].

However, the stability of the phosphonic acid layer is still a matter of debate as it seems to
depend on the oxide to be modified. Different phosphonic acid layers on ZrO»[143], ITO[110],
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[144] cobalt chromium alloys[117], [118] and Al.O3[86] surfaces were found to be stable.
Different reports show that the layers even on the above oxides are not as stable as claimed.
This discrepancy may results from the experimental conditions under which the layer is
formed (solvent, annealing) and from the conditions under which the stability is evaluated.

For example, H. Yang et al. showed that the stability of phosphonate monolayers on ITO
were affected by the experimental conditions. Monolayers prepared using the dipping method
followed by baking at 140 °C for 2 hours were as good as or even better than those prepared
using T-BAG method in terms of stability. It has been shown that phosphonate monolayers
are more stable in either PBS solution or ambient air condition than pure water[110], [144].

The stability of the adsorption of octadecylphosphonic acid on Al;Os surfaces is based on
different types of interfacial bonding, which strongly depends on the present surface
crystallographic orientation and thereby local geometries. Adhesion free energies as well as
the local atomic arrangements at the surface play a crucial role for the formation of a stable
film on aluminum oxide[86].

Generally, phosphonic acid layers are described as stable on TiO,. However, several authors
reported that their stability could be weaken. J. Ralston et al. showed that the stability of
ODPA monolayers on titania surface is influenced by the dielectric constants of the solvent
used during the layer formation[70]. C. M. Agrawal et al. investigated the stability of
phosphonic acid monolayers on titanium in tris-buffered saline (TBS 37 °C), ambient air and
ultraviolet (UV) light after modification in the solvent of doubly distilled water without
annealing. In TBS, a significant proportion of phosphonic acid molecules were desorbed from
the titanium surface within 1 day. In ambient air, their phosphonic acid monolayer was stable
for up to 14 days. It has also been found that under UV-radiation exposure, the alkyl chains of
the phosphonic acid molecules were decomposed, leaving only the phosphonate groups on the
titanium surface after 12 hours[67].

1.3.1.2 Silane
1.3.1.2.1 Silanes presentation

Surface modification with alkylsilanes is one of the most commonly used methods to prepare
organolayers on oxides. The grafting involves hydroxyl groups at the surface, which can form
Si-O-Si or Si-O-metal bridges. This reaction is often referred to as silanization. Silanes has
been used extensively for the functionalization of silica or other bioanalytical platforms as its
role in surface modification has been intensively investigated and well understood[145]-[148].
Alkyl silanes are composed of one to four leaving groups leading to the formation of one to
four bridges. For surface functionalization, monofunctional, bifunctional and trifunctional are
mainly used. Multifunctional silanes can in principle bind to a greater extent on oxide surfaces
while monofunctional silanes may yield sub-monolayer coverages. The leaving groups can be
a hydride, halide (generally chloride) or an alkoxide: Silanization with R3SiH, RSiH3, RSICls,
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RSi(OCHz3)s and RSi(OEt)s have been reported on various oxides including metal oxides (or
their native oxide layer such as aluminum oxide, zinc oxide, titanium oxide, chromium oxide
and nicked alloy)[149]-[154]. Silane organolayer formation on oxides is attributed to either
one-step reaction or two-step reaction mechanisms[9], [155]. In the one-step mechanism, the
direct condensation of pendant hydroxyls from the surface of the oxide with the silane occurs
at an appreciable rate for temperature above 300-400 °C with chlorosilanes and above 100-
200 °C with alkoxy silanes (Figure 1.8).
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Figure 1.8 One-step mechanism of silanes organolayer formation.

At room temperature, a more complex mechanism firstly involves the hydrolysis of the
leaving group of the organosilane; leading to an organo-silanol. This organo-silanol binds
with pendant surface hydroxyl groups through hydrogen bonds. Then, dehydration of the
silanol with pendant hydroxyl groups from the substrate lead to the formation of a Si-O-Si or
Si-O-M bond. The yield of this dehydration is weak at room temperature, leading to poorly
attached silane layers; it is usually necessary to use thermal annealing or catalysis (e.g. amine
catalysis) to condense water and transform a significant amount of hydrogen bonds into
covalent siloxane bonds[9], [156]. In the case of multifunctional silane (e.g. multichloro or
multialkoxy), lateral crosslinking can take place between silanes. Under uncontrolled
experimental conditions cross linking reactions can lead to 3D polysiloxane network, as
presented in Figure 1.9.
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Figure 1. 9 Two-step mechanism of silanes organolayer formation.
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As mentioned above, monofunctional organosilane (RsSiX, where X=H, CI or OEt) having
only one hydrolysable group (leaving group), only one siloxane bond can be formed either
between the silanes and the surface or between two silanes. Thus, polymerization reaction is
avoided. The modification of silanes on oxides have been demonstrated by various
characterization techniques such as ToF-SIMS, AFM, ellipsometry, IR, and XPS.

For silanes functionalization on silica, the nature of the organolayers can be further explored
by deconstructing the high-resolution XPS spectra of Si2p peaks to determine the
contributions from different SiOx moieties. M. R. Alexander et al. demonstrate that the Si2p
component peaks in SiOx films can be resolved and quantitative peak fitting can be performed
based on two assumptions: (1) each Si atom has a valence of four, resulting in four
component peaks within the Si2p envelope and (2) the shift of the Si binding energies
depends primarily on the number of oxygen atoms attached to the Si[157]. The four
component peaks of the Si2p envelope are abbreviated as Si(O)1, Si(O)2, Si(O)s and Si(O)4
with binding energies at 101.5 eV, 102.1 eV, 102.8 eV, and 103.4 eV, respectively. The
oxygen subscript indicates how many oxygen atoms are attached to the Si atom. The Si(O)a
designation indicates a tetrahedral SiO> network. The Si(O): designation indicates only one
oxygen atoms are attached to the Si atom. For example, E. Laurenceau et al. reported
monofunctional silane (APDMES) grafted silica. There are two contributions at 103.6 eV and
101.6 eV, which was assigned to the Si(O)4 and Si(O): component peak, which was indicative
of the Si(O): of APDMES bonded to the silica surface[158]. H. J. Martin et al. reported
multifunctional silane (APTES) grafted titanium. There is no contribution of Si(O):
component peak[65]. This deconvolution is widely used to characterize the SiOx containing
films on solid surfaces[159]-[164].

For the direct observation of Si-O bond formation, IR spectroscopy has previously been used
for the silica silanization studies for monitoring Si-O-Si bond formation. Silanes layers
formation on SiO2 can be monitored by the longitudinal optical (LO) absorption band that
arises from the vibrations perpendicular to the surface of Si-O bonds at the organolayers and
SiO; interface[165], [166]. However, from the broad absorption peaks at 950 cm™ - 1250 cm™?,
the modes of Si-O bonds from silica, silane/silica interface, and silane-silane cross-linking
overlap. It is quite difficult to determine whether the newly formed organosilanes are parts of
the silica network or just attached through one bond. J. Gao et al. reported that detection of
the LO phonon mode of thin SiO> films makes it possible to characterize the newly formed
Si-O bonds at the SAM/(SiO2/Si) interface[167]. Y. J. Chabal et al. reported that the APTES
layer obtained on SiO> by pre-annealing the solution at 70 °C exhibits a better stability in
deionized water than the one prepared at room temperature using in situ IR absorption
spectroscopy[168]. For silanization functionalization, combination of different technologies
have been used to investigate the organolayers formation. C. M. Agrawal et al. studied the
formation and stability of self-assembled monolayers (SAMs) on Co—-Cr—W-Ni alloy surface
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for the first time. OTS SAM coated alloy specimens were characterized using contact angle
goniometry, FTIR, XPS and AFM. The study shows that Co—Cr alloys can be surface
modified using SAMs for potential biomedical applications[152]. S. Boujday et al. reported
that the mechanism of APTES interaction with silicon surfaces was investigated using IR in
grazing angle attenuated total reflection mode, atomic force microscopy, and contact angle
measurements. It suggests the mechanism follows a nucleation-growth model on a chemically
heterogeneous surface[169].

It is noteworthy that PM-IRRAS is a sensitive and nondestructive way of acquiring molecular
information on these bidimensional systems, such as the formation of chemical bonds with
substrates, the hydrogen-bonded structures, and the conformation of the alkyl chains and the
orientation of the functional groups. L. Vellutini et al. have reported the silanization of
different molecules on SiO2/Au substrates, which were monitored by PM-IRRAS for the first
time. It allows to monitor easily the chemical modification of the terminal function of
monolayers grafted onto SiO» surfaces[170]-[174].

1.3.1.2.2 Silane layers formation: experimental parameters

Silane organolayers can be formed from solutions, from gas phase or by spin coating. J. Sagiv
et al. first reported on the preparation of silane monolayers from the solution phase[175].
Silanization is usually carried out by immersing the sample surface into a dilute solution of
silanes in an organic solvent. In solution-phase reactions, critical factors are the solvent
viscosity and polarity, and the amount of water in the liquid medium to hydrolyze the silane
molecules[57], [61], [176]. Organic solvents used for silanization include: ethanol[177],
acetone[178], [179], dioxane[57], benzene[57], toluene[57], [180]-[182], xylene[183],
pentane[57], bicyclohexyl[184], cyclooctane[57], hexadecane[57], octane[57],
cyclohexane[57], hexane[57], CCl4[57], [183] and dichloromethane[57]. Anhydrous solvents
or solvents with controlled water content are typically required to obtain a smooth monolayer.
Indeed, the water content will affect the hydrolysis of the leaving group of the organosilane in
the first step, as incomplete hydrolysis or excessive hydrolysis result in incomplete
monolayers or formation of polysiloxanes on the surface, respectively[58], [185]-[187].
Before functionalization, the solvents are either dried[188], used in normal conditions (neither
dried nor mixed with added water) or mixed with ultrapure water[178], [179]. In addition,
post-formation annealing and pre-annealing of the silicon oxide produce significant
improvements in the quality of the film and a smaller number of unreacted sites[9], [168],
[183], [188]. Indeed, the amount and the location of water (on the substrate surface, in the
solvent and even as adsorbed water on the glassware) takes a major role in the behavior of the
finalized silane layer[166], [189]. Silanes layers can also be formed by adsorption from a
vapor-phase medium[190]-[193].
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1.3.1.2.3 Silane layers stability

The stability of silane organolayers on metal oxides is mainly determined by the covalent
bonds between silane molecules with the underlying metal and cross-links between
neighboring silane molecules (Si-O-Si lateral bonds)[194]. The exact state of bonding
responsible for the stability of organolayers on metal oxides is still a matter of debate. A. Y.
Fadeev et al. explored the thermal and oxidative stability of the organosilane layers on
titanium, zirconium and hafnium dioxides by thermogravimetric analysis (TGA). The
organosilane layers showed good thermal and oxidative stability below 200 °C in air because
of the cross-linked layers between the silane molecules[195], [196]. However, C. M. Agrawal
et al. proposed that the excellent stability of dodecyltrichlorosilane (DDTS) layers on TiO>
under physiological conditions is mainly attributed to the strong Si-O-Ti covalent bonds, and
that the Si-O-Si cross-linking formed in the monolayer system was negligible. The hydrogen
bonds within the monolayer and the van der Waals interactions between the alkyl chains may
also have contributed to the stability of silanes[67].

1.3.1.3 Ortho-dihydroxyaryl (catechols) compounds
1.3.1.3.1 Catechols presentation

Recently ortho-dihydroxyaryl compounds (catechols) (Figure 1.10) have been used for
surface functionalization. Although the use of ortho-dihydroxyaryl compounds is not specific
for metallic oxide functionalization, it has the advantage of allowing to obtain stable layers
without the need of harsh conditions[197], [198]. The binding mechanism is complex due to
the fact that the film formation is composed of the attachment of the catechol to the oxide
surface and to the oxidation-polymerization/crosslinking reaction of the bound catechol with
the ones in the solution. The resulting polymeric film (e.g. polydopamine) has strong
interfacial adhesion with the surfaces. The polymerization of catechol can be controlled by the
introduction of electron-withdrawing groups, limiting oxidant media and controlling the pH
values of solvents[73], [199]. Here we will not discuss much about the polydopamine film
formation. We will just discuss the attachment of catechol-based monolayers on metal oxide.

a . b
OH HOj@/\/NHZ
HO

Figure 1.10 Two examples of catechol compounds (a) Simplest catechol, (b) dopamine.

The formation of mono and bidendate complexes require the replacement of the surface
hydroxyl by the deprotonated aromatic hydroxyl in a variety of binding modes, which has
been shown to be operative for titanium, aluminum and iron oxides. However, the exact
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chemistry behind is not fully understood so far. The mechanism of catechol bonding has
actually been studied for several years and different interaction forms of catechol groups with
surfaces have been proposed[54], [197], [200]. The proposed mechanisms of catechol grafted
on oxides surfaces is shown in Figure 1.11.
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Figure 1.11 The proposed mechanism of catechol molecules binding to metal oxides surfaces.

The real interaction might be a mixture of these different interaction modes and is probably
substrate dependent. Different analysis methods such as nuclear magnetic resonance (NMR)
spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Scanning
Tunneling Microscope (STM), were used to better understand the binding modes (Table 1.5).

Methods Discussion

On titania, N1s XPS spectra indicate that catechol derivatives results in
two possible configurations: H-bond stabilized mononuclear
monodentate and binuclear bidentate configurations bonds[73]. Using

Binding mode i )
STM, it was proposed that monodentate or mixed monodentate-
bidentate can easily convert from one into the other via proton
exchange between the surface and the adsorbed catechol[78], [201].
Raman spectroscopy indicates that DOPA adsorbs on TiO2 surface
i i forming two species depending on the pH values and surface
Orientation

coverages: (1) standing up orthogonal and (2) lying down parallel to
the surface[75].

Table 1.5 Different analysis methods of binding modes.
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1.3.1.3.2 Protocols for catechol layer formation

Surface functionalization with catechol is performed exclusively from solution. As mentioned
above, catechol can oxidize and self-polymerize under alkaline conditions (typically pH 8.5)
with oxygen as the oxidant[202]. Indeed, dopamine is liable to oxidation into polydopamine,
especially at elevated pH. In order to form dopamine or catechol derivatives monolayers,
formation of the monolayer has to be performed in non-alkaline solvents and under inert
atmosphere. Solvents used for catechol functionalization include: pure water[73], organic
solvents mixed with ultrapure water (water/ethanol 3:2, water/2-propanol 2:1)[203] and acidic
buffer buffers[199]. The substrates are immersed in the solution containing catechol (0.2-1
mg/ml) at room temperature with modification times of several minutes to 48 hours under
inert atmosphere[72], [73].

1.3.1.3.3 Catechol layers stability

Different binding configurations of catechol derivatives give raise to different bond strength
and can thus lead to different stabilities. Dopamine-modified TiO> colloids exhibit very stable
optical properties when exposed to thousands of 10mJ laser pulses and at daylight even for
two to three years[204]. M. Textor et al. have tested the chemical stability of catechol-
functionalized poly(L-lysine)-graft-poly(ethylene glycol) copolymer: PLL-g-(DHPAA; PEG)
layer coated TiO. substrate in saturated sodium chloride solution for 17 hours at room
temperature[205]. Some reductions in film thickness in high ionic salt solutions was found,
possibly due to the loss of some loosely bound polymers. In addition, the stability
performance of this copolymer was drastically altered by the presence of DHPAA ligands.
Similarly, B. Xu et al. showed that dopamine-based anchor on iron oxide surface exhibited
exceptional stability after being boiled in Tris buffer for 20 min[206]. E. Reimhult et al.
reported PEG-dopamine modified iron oxide nanoparticles exhibited good stability after
diluting them in water for at least 4 months without nanoparticle agglomeration[207].

1.3.2 Gold

The study of gold functionalization represents a much lesser part of the work developed
during this PhD, we will not go in such a great detail of the literature as we have done
concerning oxides functionalization. Nonetheless, let us briefly present those aspects of gold
functionalization, namely the choice of the binding group and standard protocols.

1.3.2.1 Alkanethiol

The grafting of a molecule on gold involves reaction with atoms from column 16 in the
Mendeleev table mainly sulfur and selenium. The literature is mainly documented on
organomercaptan (alkanethiol) gold functionalization. The reaction of organomercaptan give
rise to gold—sulfur (Au-S) bonds via anchoring thiols [6], which is shown in Figure 1.12.
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Figure 1.12 Simplified reaction scheme for alkanethiols functionalization on gold surfaces.

Alkanethiols are firstly physisorbed through Van der Waals interactions (between the alkyl
chains/gold and and thiol/gold) on the substrate even at very low concentrations in a
metastable state, with energies are in the order of 40-100 kJ/mol[208]. Physisorption energy is
on the order of 6.1 kJ/mol per CH> group, and the order of 33 kJ/mol for a thiol group. Then,
the so-formed thiolate is covalently bound onto gold surface, (80-200 kJ/mol)[6], [208]-[210].
At last, the adjacent alkyl chains organize themselves in an ordered and close-packing via Van
der Waals forces (4-8 kJ/mol per methyl unit)[211]. Other chemical groups are reported to
bind onto a gold surface (Figure 1.13).
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Figure 1.13 Different chemical groups to bind an organic molecule onto a gold surface.
1.3.2.2 Formation of the alkanethiol layers: experimental parameters

An easy way to form thiolate layers on gold surfaces is to immerse the sample in a solvent
containing the desired thiols at room temperature. The solvents used to build these thiolate
layers are pure ethanol, water/ethanol mixture[219], [221], THF[222], [223], acetonitrile[219],
[223], [224], ethyl acetate[224], diethyl ether[224], chloroform[224], hexadecane[223],
carbon tetrachloride (CCl4)[219], [223], dichloromethane (DCM)[224], and toluene[223].
Ethanol is the most common solvent for building thiolate layers. A survey of the publications
shows that most protocols use concentrations of 1-10mM with functionalization times of 3-24
hours[225]-[232]. These thiols usually have an alkyl or alkyl-PEG spacer with common
lengths of around 3-16 methylene units and 3-6 Ethylene Glycol (EG) units in the case of
alkyl-PEGs. Thiolate layers can also be formed by adsorption from a gas phase in ultrahigh
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vacuum[233], [234]. Adsorption from a gas phase has been mainly used to obtain
fundamental information about the SAM formation mechanisms and Kinetics, especially at the
early stages.

1.3.3 Characterizations

There are many tools to characterize the chemical state of organolayers at a solid surface.
Here we will not give extensive details about these techniques but rather a comparison of their
specifications and the complementary information that can be obtained from them (Table 1.6).
The values given in this table are only indicative, as variations are possible depending on the
parameters and conditions of use. All the following tools will be explained in more detail in
the Annex A. In the following paragraphs we will review the state of the art of orthogonal

surface functionalization with organolayers.

Characterization Information Depth of analysis | Spatial resolution
Contact angle* Surface energy 0.3-2nm imm
Ellipsometry thickness, dielectric constant 10nm 10-100um
Electrochemistry Electric properties 0.1nm -
XPS imaging Chemical, elemental 2-5nm 10-50um
XPS* Chemical, elemental 2-5nm mm
ToF-SIMS* Chemical 1nm 100nm
IR spectroscopy* Chemical 1-5um 10pum
PM-IRRAS* Chemical 1-5um mm
Raman Chemical 100nm 1pym
AES Elemental, Chemical 1-2nm 50nm
AFM* Topograp.hy., elasticity, 0.2-0.3nm 0.1nm
friction
ST™M Elemental 0.1nm 0.1nm
TERS Chemical 0.2-0.3nm 10nm

Table 1.6 Summary of different surface chemistry characterization tools. “*” indicates
characterization tools that are used in the present PhD thesis experimental work.
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1.4 Orthogonal chemical functionalization of heterogeneous
surface

1.4.1 Introduction to orthogonal chemical functionalization

If a substrate is composed of different materials, orthogonal chemical functionalization can
then take advantage of the affinity of different substrate binding head groups for these
materials in order to obtain different organolayers on these materials.

1.4.2 State of the art of orthogonal functionalization

Orthogonal functionalization on patterned substrates concerns generally the functionalization
of a substrate featuring metallic and oxide areas. In the literature, reported orthogonal
functionalization concern mainly dual material substrates composed of a metal and an oxide.
The most reported ones are: gold/silica, gold/metal oxide, silica/metal oxide and gold/metal
oxide/silica, as shown in Table 1.7. The oxides can be metal oxide such as TiO2, SiO2, glass
or ITO. Material bearing a native oxide such as silicon, silicon nitride are considered as oxide
as their reactivity to substrate binding head groups is similar as to the one of oxides.
Considering the gold/oxide dual substrate, one can take advantage of the thiol head groups as
a specific reactant for gold modification. Silane, organo-phosphonic acids, carboxylate or
amine can be exploited for oxide modification. Several examples of thiol/silane,
thiol/phosphonic acids or thiol/carboxylates can be found in the literature. The scheme of the
combination of orthogonal functionalization is shown in Figure 1.14.

phosphonate;
carboxylate

Figure 1.14 Schematic representation of the combination of orthogonal functionalization.
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Substrate Coupling reaction and Conditions Steps Discussion Ref
a mixture of 2.5 all silane (PEG-silane),
1.25 mL toluene and 1pL concentrated 2 [50]
HCl/thiol 5 mM (SH-PEG-NHy) or 0.6 [235]
MM (HS-nucleic acid) in ethanol
1 mM thiol (ODT, MUD, MHA, AUT)
in ethanol/l mM silane (Cl3Si(C2H20)s-
) (CLSI(CH-0)s 2 Orthogonal functionalization have [47]
9CH3) in toluene . —
been achieved that combinations
AUSIO thiol/silane 9 mM/1 mM (MUA/F- of silanes and thiols were grafted
? silane) or 14 mM/1 mM (F-thiol/PEG- 1 on gold/SiO, patterned surfaces [51]
silane) or 5 mM/ 1 mM (MU-Biot/PEG- selectively.
silane) in dichloromethane
2% silane (APTES) in a mixture of
acetone and water (95/5), annealing at 2 [179]
110 °C for 2 h/1 mM thiol (thiol-OEG)
in ethanol
1 mM thiol (HS-C11-EGe-Biotin) in [236],
ethanol/13 pM silane (MPEG-silane) in 2 [237]
toluene with acetic acid
1 mM thiol (thiol-PEG or thiol-PEG- Thiols were grafted on gold
biotin) in ethanol/10 pg/ml amine (PLL- 2 selectively, while amine (PLL-g- [238]
g-PEG or PLL-g-PEG-biotin) in HEPES PEG) has the affinity on SiO..
2 mM thiol (11-mercaptoundecanoic Alkylthiols have a stronger
Aulglass acid in isopropanol/215 pL silane 2 affinity with metals than glass. [239]
(PolyEthylene-Glycol) in 50mlI DCM
1mg/ml amine (PLL-g-PEG) in HEPES The PLL-g-PEG was displaced by
AU/SIN buffer/img/ml streptavidin in HEPES 2 streptavidin on Au while has no [240]
buffer effect on SiN, as streptavidin has
a higher affinity to Au than PLL-
g-PEG.
0.3mg/mL  thiol (SH-PEG/SH-PEG- The protocol developed allowed
AU/TIO, biotin) in HEPES buffer/0.01 mg/mL 2 to graft thiol only on the Au. The [49]
amine (PLL-g-PEG) in HEPES buffer remaining TiO, was backfilled
with amine (PLL-g-PEG).
0.5mM  phosphonate  (ammonium The protocol developed allowed
Si0,/TiO, dodecyl phosphate) in purity 2 to graft phosphonate only on the [46]
water/Img/mL amine (PLL-g-PEG) in TiO,. The SiO, was backfilled by [241]

HEPES buffer

amine (PLL-g-PEG).

Table 1.7 Summary of orthogonal chemical functionalization on bi-material substrates.

50




Chapter 1. State of the art

There are only very few examples in the literature of the successful modifications of tri-
material bearing substrates, which are summarized in Table 1.8.

Substrates Chemicals Discussion

AUTIONSIO; Thiol/nitrodopamine- The protocol developed allowed to graft nitrodopamine-

0421, [243 biotine/Amine (PLL-g- | biotine only on TiO and thiol only on the Au. The remaining
[242], [243] PEG) Si0O2 surface was backfilled with amine (PLL-g-PEG).
The selectivity of the thiols for Au and the carboxylic or
AU/Al;03/Si3N4 ) phosphonic acids for Al,O; was determined by the selective
Thiol/carboxylate o
[45] assembly of these reagents on the Au and Al.Os while SisN4

remains unmodified.

The selectivity of the thiols for Au and the carboxylic or
AU/ITO/SizN4 Thiol/carboxylic  acid | phosphonic acids for ITO was determined by the selective
[244] or phosphonic acid assembly of these reagents on the Au and ITO while SizNg
remains unmodified.

Table 1.8 Summary of orthogonal chemical functionalization on gold/metal oxide/silicon substrates.

1.4.3 Conclusions and  perspectives of  orthogonal chemical
functionalization

Orthogonal chemical functionalization of patterned substrates has already been undertaken by
several groups throughout the world. They showed that orthogonal functionalization can be
used either for the precise placement of colloids or the enhancement of LSPR-based biosensor
with selective capture of target on sensitive areas. Here, we could find some important points
worth noting.

Various substrate binding head groups were used: combination of thiol/silane or
thiol/phosphonic acid for the modification of gold/oxide substrate. Polylysine was also used
for the modification of oxides. However, in this case, it is compulsory to firstly functionalize
the gold substrate with a thiol. Indeed, amines are also known to adsorb on gold, whereas
thiols do not react with oxide. In other words, if one of the reactant to be used is less selective,
it should be used at last to ensure the orthogonality.

In the case of TiO,/SiO, templates, phosphonates were used because phosphonates react
selectively on TiO2> and weakly with SiO. Indeed, it has been reported that stable
phosphonates layers grafted on SiO2 need an annealing step to be performed. In fact the T-
BAG procedure was developed with the aim to form stable phosphonic acid layers on
SiO-[62]. R. Michel et al. take advantage of the limited stability of SiO2-phosphonate bond to
selectively functionalize TiO2 within a matrix of SiO2[241].

However, most of the examples lack direct chemical characterizations of the orthogonal
chemical functionalization. Indeed, the successful orthogonality was addressed indirectly
using colloids trapping or SPR experiments. Besides, the stability of the formed organolayers
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is often not addressed. Finally, most of the reported orthogonal functionalization involves two
steps: functionalization of one material after washing, followed by functionalization of the
second material. However, if functionalization is truly orthogonal, there is no reason why both
functionalizations could not be operated simultaneously. Of course, for the initial research,
different independent molecules grafting on the different surfaces step by step could help us
to test and understand the orthogonality. And the choice of solvent is also critical, if two
molecules are not soluble in one solvent, it is necessary to modify each material step by step.

1.5 Conclusions and presentation of the following work

1.5.1 Titanium tungsten (TiW)

In order to open access to new markets for semi-conductor industries and associated photonics
and electronics industrial platforms (industrial analysis, molecular diagnostics, environmental
analysis...), the fabrication of chemical sensors and biosensors needs to be fully compatible
with industrial production line. The architecture of the sensors’ transducers (e.g.: micro or
nanophotonic devices such as ring resonators, LSPR devices, nanoelectronic devices such as
field effect transistors) are expected to potentially provide better performances than the state
of the art (sensitivity, lifetime, reliability) and offer the possibility to be embedded in finalized
sensor chips[245], [246]. Exploring the performances of such nanosensors implies to be able
to efficiently functionalize the surface of the sensing zones. This consequently implies to
study the behavior and the surfaces of materials classically used in industrial production of
nanodevices. Silicon dioxide, silicon nitride, titanium oxide, titanium tungsten provide
examples of materials that are classically used in such devices. Among these materials,
titanium tungsten (TiW) is a material very well mastered in nanoelectronics industrial
production lines, and that can be produced with stable properties and behavior. It is used as a
diffusion barrier and promoter of adhesion between metal and dielectric[247]-[249]. TiW
barrier layers have for instance been investigated extensively for Al and Cu interconnects as
well as for silver or gold metallization[250]-[253]. TiW barrier layers applications for
different metallization or metallic interconnections in silicon or SiO: are listed in Table 1.9.

Systems Thickness Stability

PU/TiW/SiO,[249] 5nm 600 °C in vacuum, 400 °C in air(12h)

Ag/TiIW/Si[254], [255] 170nm /200nm | 600 °C(1h) /650 °C in vacuum(30min)

AU/TIW(N)/Si[256] 45nm 600 °C in air (2h)
Al /TiW/CoSi2[257] 40nm 550 °C in N2 (20min)
Al /TiW/Si[250] 80nm 500 °C in air (2h)

Table 1.9 Summary of TiW barrier layers application for metallization or metallic interconnections.
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STMicroelectronics' engineer Stéphane Monfray proposed to provide our group with a TiW
wafer, in order to study in depth TiW abilities to be functionalized either for attaching
molecular probes or to be efficiently passivated and disable molecular adsorption.

1.5.2 Aim of the present thesis

As explained in the general introduction, the aim of the following work was to investigate the
orthogonal chemical functionalization of TiW based substrates featuring Au and SiO> patterns.
To achieve this aim, we have

(1) Studied three different means for the formation of organolayers on TiW. To the best of our
knowledge, chemical functionalization of TiW has never been reported before. The three
layers were characterized and the stability of the formed layers was also addressed,

(2) Developed and ascertained the orthogonal chemical functionalization of patterned Au/TiW
and AuU/SIO./TiW patterned substrates. To the best of our knowledge, orthogonal
functionalization of AuU/TiW has never been reported. Furthermore, orthogonal
functionalization of triple material substrate is only scarcely reported. We have studied the
functionalization of Au/SiO2/TiW substrate.

(3) Capturing of nanoparticles by electrostatic interaction at specific location on Au/TiW
patterned substrate was successfully implemented to prove the interest of such method for
colloids trapping.

1.5.3 Substrates and patterns

Different substrates (plain TiW substrates, patterned Au/TiW substrates and patterned
Au/SiO2/TIW substrates) were used during this work, which we can separated into the
following categories, as shown in Figure 1.15.

Macroscale Au/TiW substrate

1cm
Al dfp— d—-

2cm

Macroscale Au/SiO,/TiW substrate

TiW
Plain TiW substrate Au
Si0,
1cm
— 100-600 pm
o
2 cm 1.2 cm

Microscale Au/TiW substrate
100 pm

¢

e 1.2 cm

Microscale Au/SiO,/TiW substrate

Figure 1.15 Schematic representation of sample dimensions (not to scale).
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Plain TiW substrates (200 nm thickness on silicon) were provided by STMicroelectronics.
They allow an easy monitoring of different functionalization by methods such as IR, ToF-
SIMS (Collaboration with Pr. Didier Léonard, ISA) or XPS. They were used to investigate
different organolayers formation.

Macropatterned Au/TiW substrates correspond to TiW substrates with half of the surface
covered by gold. They were made by masking half of the substrate during Au e-beam
evaporation. Macropatterned Au/SiO2/TiW substrates correspond to TiW substrates with one
third of the surface covered by Au and the other one third of the surface covered by SiO».
They were made by masking the substrate during Au e-beam evaporation and silica sputtering.

Micropatterned Au/TiW substrates corresponds to TiW substrate with Au structures ranging
from 100 umx100 pm to 600 umx 600 um. They were made by UV lithography process.
Micropatterned Au/SiO2/TiW substrates corresponds to TiW substrate with Au lines and
silica squares. They were made by a two-step UV lithography process. Patterned substrates
were prepared by myself and co-workers. Annex B describe the fabrication of the substrates.

1.5.4 Functionalization

Three molecules were chosen to functionalize TiW with the goal of studying the stability of
the formed organolayers on TiW. These molecules were: 3-aminopropylphosphonic acid
(APPA), 3-ethoxydimethylsilylpropylamine (APDMES), dopamine (DA) (Figure 1.16). They
have same amino headgroup and similar length. They differ only by substrate binding group.
The choice of amino terminated molecules was driven by the fact that nitrogen could be used
as a reporter.

a4 N, b nn, C  nm
oH—P=o0 H,C— Sli—CHs
| o
H.C
OH OH oOoH Y

Figure 1.16 Schematic representation of APPA (a)), APDMES (b) and DA (c).

Eventually, perfluorinated thiol (1H,1H,2H,2H-Perfluorodecanethiol), perfluorinated
phosphonic acid (1H, 1H,2H,2H-Perfluorooctanephosphonic acid), perfluorinated silane
(1H,1H,2H,2H-Perfluorodecyldimethyl-chlorosilane) were used for  orthogonal
functionalization characterization (XPS, IR and ToF-SIMS imaging). Fluorine enriched
molecules have obvious signal for the demonstration of the orthogonality. 11-
Mercaptoundecanoic acid (MUAM) was chosen to functionalize gold region of patterned
AU/TIW substrates. At natural pH environment, MUAM functionalized surface is negative
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charged, which have the possibility for trapping the positive charged nanoparticles or
biomolecules.

1.5.5 Characterizations

In the course of this PhD, for the studies of surface chemical functionalization of the
organolayers on TiW, Au/TiW and Au/SiO2/TiW substrates, AFM and XRD were used for
information on the roughness and crystallinity. XPS, ToF-SIMS and IR were used to
characterize and analyze the composition and stability of different layers. For the studies of
orthogonal functionalization on Au/TiW and Au/SiO2/TiW substrates, XPS and IR were used
to characterize the orthogonality of macropatterned substrates. ToF-SIMS imaging was used
to characterize the orthogonality of micropatterned substrates. SEM was used to visualize the
captured nanoparticles.
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2 Surface chemical functionalization of titanium
tungsten substrate with silane, phosphonic acid or

ortho-dihydroxyaryl based organolayers

2.1 Introduction

Surface chemical functionalization of inorganic materials has been developed for various
applications, such as surface patterning fabrication[1], tissue engineering[2], biosensors[3]
and corrosion inhibition[4]. Surface chemical functionalization can be achieved either using
polymeric material deposition or by the attachment of low molecular weight functional
molecules bearing a chemical group that can react with the surface of the materials (substrate-
binding head group) to form an organolayer. For example, the most reported reactions are the
ones of thiols on gold surfaces and of silanes on silica surfaces though the formation of Au-S
and Si-O bond, respectively[5]-[8]. Surface functionalization of metallic oxides,
semiconductor oxides or material without oxygen in the bulk but bearing surface bound
hydroxyl groups can be achieved using a variety of substrate-binding head groups such as
organosilane, alkyl iodides, alkyne, alkene, amine, carboxylic acids, hydroxamic acids[9]. In
the following, we will focus on the use of organosilanes, organo phosphonic acids and ortho-
dihydroxyaryl compounds for metal oxide derivatization. Herein, metal oxide does not
necessarily refer to the bulk of the material but to the top layer.

Silanization of a wide variety of oxides have been reported including metallic oxides or their
native oxide layer such as aluminum oxide, titanium oxide, steel and nickel alloy[10]-[13].
Silane monolayers formation on metal oxide is attributed to either one step reaction or two
step reaction mechanisms. In the one step mechanism, the direct condensation of pendant
hydroxyls from the surface of the oxide with the silane occurs at an appreciable rate for
temperature above 300-400°C with chlorosilanes and above 100-200°C with alkoxy
silanes[14], [15]. The two step mechanism involved first, the hydrolysis of the leaving group
(chloro, alkoxy or hydride) of the organosilane leading to an organo-silanol. Then,
dehydration of the resulting silanol with pendant hydroxyl groups from the substrate lead to
the formation of a Si-O-M bond. Furthermore, in the case of multifunctional silane, lateral
crosslinking between organo-silanols, can take place. However, under uncontrolled
experimental conditions cross linking reactions can lead to 3D polysiloxane network. The
temperature, the solvent and the surface water content are critical parameters for the
formation of reproducible organosilane layers[16]-[18]. Furthermore, the density of grafted
organosilane is governed by the surface silanol density when 3D polymerization does not
occur. Surface grafting densities are ranking between 0.14 to 3.5 pumol/m?2 on silica based
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substrates. The stability of the Si-O-M bond ranks from good to poor as follow: Si-O-Si > Si-
O-Al > Si-O-Cu > Si-O-Fe > Si-O-Ni > Si-O-Zn > Si-O-Pb > Si-O-Sn > Si-O-C[19].

Alternatively, phosphonic acids and their phosphonate ester derivatives have been used for
surface functionalization of metal oxides, such as aluminum oxide, titanium oxide, tungsten
oxide and iron oxide [10], [20]-[23]. The reaction mechanism is complex and leads to a
multitude of binding modes that depend on the metal oxide in particular its Lewis acidity,
temperature, pH value, concentration and solvent[24]. On silica, hetero-condensation of
phosphonic acids with pending silanols requires annealing temperature in the 120-140°C
while it seems not compulsory with other oxides in particular titania[25], [26]. In addition, it
was proposed that the P-O-W bonds is twice as strong as S-Au bonds, which may provide a
more robust attachment of some molecules to certain metal oxide surface[10], [27]. For
example, the stability of an organo phosphonate layer has been demonstrated to be higher on
CrN than the one observed with organosilane[28].

Although the use of ortho-dihydroxyaryl compounds such as catechols is not specific for
metallic oxide functionalization, it has the advantage of allowing to obtain stable layers
without the need of harsh conditions[29], [30]. However, the binding mechanism is complex
due to the fact that the film formation is composed of the attachment of the catechol to the
oxide surface and to the oxidation-polymerization/crosslinking reaction of the bound catechol
with the ones in solution. The resulting polymeric film has strong interfacial adhesion with a
wide range of surfaces. The cross-link is favored under alkaline and oxidative conditions. The
binding of catechol to oxide surfaces seems to involve the formation of monodendate and
bidendate complexes and requires the replacement of the surface hydroxyl by the
deprotonated aromatic hydroxyl. The oxidation/polymerization of catechols could be
successfully controlled by the introduction of electron-withdrawing groups, limiting oxidant
media and controlling the pH values[31], [32].

In order to open access to semiconductor industries and photonics industrial platforms such as
molecular diagnostics and environmental analysis, the fabrication of transduction devices
needs to be fully compatible with industrial production. The architecture of the transducers
should also potentially provide better performances and offer the possibility to be embedded
in a finalized sensor chip. TiW used as a barrier layer material has already been reported in
some electronic structure[33]-[41]. Although, surface modification of titanium oxide has been
widely described, the functionalization of tungsten oxide have only been reported with
organophosphonic acid, to the best of our knowledge, surface functionalization of TiW has
never been reported[23], [42].

In this context, this study provides for the first time functionalization studies on TiW layers
deposited on silicon substrates. Since titanium and tungsten are prone to form oxide layers,
we first assessed that a surface oxide layer is indeed present after plasma oxygen cleaning.
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Next we compared the formation of organolayers on TiW using organosilane, phosphonic
acid and ortho-dihydroxyaryl compounds. Three molecules: 3-aminopropylphosphonic acid
(APPA), 3-ethoxydimethylsilylpropylamine (APDMES), dopamine (DA) were used to
functionalize the TiW surface with the goal of studying the stability of the formed
organolayers. X-ray photoelectron spectroscopy (XPS), Time-of-flight secondary lon mass
spectrometry (ToF-SIMS) and Fourier transform infrared spectroscopy (FTIR) were used to
characterize and analyze the different layers. APDMES, APPA and DA are primary amine
molecules. The amino-functionalized surfaces are expected to provide a foundation and
prospect for further applications.

2.2 Experimental section

2.2.1 Materials

200 nm thickness TiW on Si substrate was prepared by STMicroelectronics. Chemicals are of
reagent or higher grade commercially available. Dopamine hydrochloride 97% (DA) and 3-
aminopropylphosphonic acid (APPA) 97% were purchased from Sigma-Aldrich. (3-
aminopropyl)-dimethylethoxysilane (APDMES) 99.9% was purchased from abcr GmbH.
Dichloromethane (DCM) 99.9% was purchased from Sigma-Aldrich and dried over molecular
sieves before use. The ultrapure water (18.2 MQ) used for all the experiments was obtained
by VEOLIA water system.

2.2.2 Chemical functionalization

The substrates were cleaned by oxygen plasma treatment (Anatech) at 400 sccm of oxygen,
350 W of forward power (10W reflected power) for 5 min to remove any organic
contamination and to obtain a hydroxyl-terminated surface. After being activated,
organolayers were formed by immersing the TiW substrates in the solutions of the three
different molecules.

TiW was functionalized with APDMES using the following protocol: substrates were
immersed in 25 ml dried DCM containing 10ul APDMES (3 mM) for 48 hours. The samples
were then rinsed with fresh DCM for 5 min under ultrasound (Branson, 42 kHz, 100 W)
followed by a stream of ultrapure water and dried with nitrogen flow.

TiW was functionalized with APPA using the following protocol: substrates were immersed
in 10 mM APPA aqueous solution for 24 hours. The samples were then rinsed with ultrapure
water for 5 min under sonication followed by a stream of ultrapure water before drying with
nitrogen flow.

TiW was functionalized with DA using the following protocol: substrates were immersed in
0.5 mg/mL degassed ultrapure water of dopamine (2.5 mM) for 24 hours under nitrogen
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atmosphere. The samples were then rinsed with ultrapure water for 5 min under sonication
followed by a stream of ultrapure water before drying with nitrogen flow.

Herein TiW functionalized by APDMED, APPA and DA organolayers were named by
APDMES-TiW, APPA-TiIW and DA-TiW, respectively.

2.2.3 Organolayers stability

APDMES-TiW, APPA-TiIW and DA-TiW were immersed in ultrapure water and incubated at
70 °C for up to 1 hour. After removal from the water, the samples were rinsed in ultrapure
water. All samples were dried with nitrogen flow.

2.2.4 Characterization

X-Ray Diffraction (XRD). The crystal structure of TiW was characterized by XRD. A Rigaku
Smartlab diffractometer with a rotating anode (power 9 kW) was used. The source emitted
CuK radiation that was monochromatized by a double Ge (220) crystal to select the CuKa 1
ray (A = 0.15406nm). The detector is a point scintillation counter.

Atomic Force Microscopy (AFM). Surface topography of TiW was monitored using a
SMENA B (NT-MDT) AFM microscope in tapping modulation (AM) mode with Mikromash
XSC11 with Al backside tips (resonance frequency 80 kHz). Data analysis was performed by
Gwyddion Software.

Attenuated total reflectance Fourier transform infrared (ATR-FTIR). ATR-FTIR was
analyzed using a Thermo Nicolet 6700 spectrometer with MCT detector (Electron
Corporation, USA) by a germanium crystal from 800 cm™ to 4000 cm™. Results were
obtained from averages of 256 scans at a resolution of 4 cm™.

Time-of-flight secondary ion mass spectrometry (ToF-SIMS). ToF-SIMS measurements were
performed with a Physical Electronics TRIFT 1l instrument (Physical Electronics,
Chanhassen, MN) operated with a pulsed Au ion gun (ion current of 2 nA) over a 300 pm x
300 um area. The ion dose was kept below the static conditions limits. Data were analyzed
using WinCadence software. Mass calibration was performed on hydrocarbon secondary ions.

X-ray Photoelectron Spectroscopy (XPS). XPS measurements were performed with a VSW
spectrometer using a monochromatized X-ray source (Al Ka 1486.6 eV). Spectrum
acquisitions were performed under ultrahigh vacuum conditions (UHV, 107° Torr). Take-off
angle was 90° relative to the substrate surface. The pass energies were 100 eV and 20 eV for
wide-scan and high-resolution elemental scans, respectively. The data reduction (atomic
concentration, shift, curve fitting, etc.) was performed with CasaXPS software. The C-C
contribution in C1s core level was fixed at 284.6 eV. Full width at half maximum (FWHM)
for the component peaks of Si2p, P2p, N1s, and O1s were constrained to be 1.7 eV, 1.9 eV,
1.7 eV, and 1.4 eV, respectively.
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2.3 Results and discussions

2.3.1 Roughness and crystallinity of TiW

Figure 2.1 AFM image of TiW surface before (a) and after (b) O, plasma.

The AFM images show that the surface topography of TiW before and after oxygen plasma
cleaning (Figure 2.1). It is formed of small islands having a width of ca. 100 nm and heights
of ca. 35-40 nm. The Root Mean Square (RMS) was found to be around 3.9 £ 0.5 nm. This
rugosity does not seem to be altered by oxygen plasma cleaning. This surface topography
suggests that it would be difficult to obtain information on organolayers built on such surfaces
through topography as the organolayers are expected to be on the order of 1nm thick.
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Figure 2.2 XRD pattern of TiW surface.

Figure 2.2 shows the XRD spectra of oxygen plasma cleaned TiW measured in a range of 20
from 20° to 80°, which reveals the (110) diffraction peak of TiW at 26=39.9°[33], [34], [40].
The other two peaks result from the silicon substrate. The XRD diffraction spectrum of TiW
is consistent with a body centre cubic (bcc) phase[38], [40]. According to the Bragg's law and
standard formula for cubic system[43], [44], as shown in the functions below:
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2d Sin® = A
1 R+ 1P+k?

d? a?
A is the wavelength of the incident wave (1.54059 A), 0 is the scattering angle (39.9364°), d is
the lattice spacing, (h, k, 1) is the (110) plane, the lattice constant (a) of TiW deduced from the
XRD pattern is 3.186 A. According to the XPS results in Table 2.1, the atom ratio of W/Ti is
2.444. After the normalization, the stoichiometric composition of TiW was suggested to be
Tio.20Wo.71[38], [40].

2.3.2 TiW surface functionalization with organolayers

Ols

PDMES - TiW

Si2s Si2p
PPA - TiW

P2s P2p
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E
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Figure 2.3 XPS survey scans of control TiW, APPA-TiW, APDMES-TiW and DA-TiW.

XPS survey scan spectra of control TiW surface after plasma cleaning and the three
organolayers functionalized TiW are shown in Figure 2.3. From the three organolayers coated
TiW XPS spectra, APPA-TIW showed distinct N1s (401.0 eV), P2s (190.3 eV) and P2p
(133.2 eV) peaks, APDMES-TiW showed distinct N1s (401.0 eV), Si2s (153.3 eV) and Si2p
(101.3 eV) peaks, and DA-TiW showed distinct N1s (401.0 eV) in addition to W and Ti core
levels. Also, the carbon atomic percentages of three organolayers coated TiW specimens were
significantly higher than the control TiW: they are attributed to the successful grafting of DA,
APPA and APDMES molecules on TiW. On the control TiW, no P, Si or N were detected.
The ratio W/Ti was 2.42 and the oxygen atomic percentage was 65% which is expected
considering the stoichiometry of the two oxides and the respective atomic percentage of
titanium and tungsten. After surface functionalization, the decrease of Ti, W and O atomic
percentages was observed as expected for core levels from a substrate covered by an
overlayer. As the ratio W4f/Ti2p remains stable but the O1s/Ti2p increases, part of the
oxygen may originate from the organic contamination. This is comforted by the correlated
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increase of the Cls atomic percentage. On all functionalized surfaces, a similar N atomic
percentage was observed (3-4%). 3.3% of P and 3.6% of Si were measured on APPA-TIW
and APDMES-TIiW, respectively. The N/P and N/Si ratios (nearly 1) are in good agreement
with the chemical structures of two molecules. The chemical compositions of different
elements are listed in Table 2.1. For each functionalization type, XPS spectra were measured
on two different substrates. One region was analyzed on the first substrate, and two regions
were analyzed on the second substrate. After XPS fitting and analysis, the three measurements
values were averaged. In this table, uncertainty values for each line indicate the calculated
standard deviation for the three regions of the functionalized TiW.

Cls Ols Ti2p Waf N1s P2p Si2p

Control and organolayers functionalized TiW

Control 9.6+0.8 65.6+1.1 72+0.8 176 +0.8 - - -

APPA-TiW 333+10 532+09 20+06 4.6+0.6 3.6+0.3 3.3+0.3 -

APDMES-TiIW  298+09 558x0.5 2407 48+0.6 35+04 - 3.6+05

DA-TiW 38.7+05 499+1.0 27+05 53+06 3.3+0.3 - -

Organolayers functionalized TiW after immersion in 70 °C H20 for 60 mins

APPA-TIW 306+0.7 57506 2504 45+05 25+0.2 24+0.3 -

APDMES-TIW  22.7+06 61.1+0.5 5006 105+0.7 03+01 - 0401

DA-TIW 29.2+08 58.8+0.9 28+05 76+04 1.6+0.2 - -

Table 2.1 XPS determined atomic concentrations (%) of Control and three organolayers
functionalized TiW before and after immersion in H,O at 70 °C.
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Figure 2.4 High-resolution XPS WA4f peak (a) and Ti2p peak (b) of control Tiw.

On the control TiW (Figure 2.4a), doublet peaks of W4f7, and W4fs, appeared at 31.6 eV and
33.7 eV corresponding to the metallic W state in the high-resolution XPS WA4f spectrum. Two
well-defined peaks located at 36.1 eV and 38.2 eV were consistent with those of the W®* state
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in oxides[45], [46]. In Figure 2.4b, Ti2ps2 and Ti2py2 with binding energy of 458.6 eV and
464.4 eV correspond to Ti** state in oxides while two other peaks were merely observed
peaks at 453.7 eV and 459.7 eV and corresponded to metallic Ti[47], [48]. Therefore, XPS
Wif and Ti2p high resolution spectra revealed that Ti and W oxides are present on the surface
of TiW, opening the possibility of using organosilane, organophosphonic acid and ortho-
dihydroxyaryl compound for its surface functionalization.
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Figure 2.5 (a) High-resolution XPS N1s peak of control TiW. (b) High-resolution XPS N1s peak and
(c) P2p peak of APPA-TIW. (d) High-resolution XPS N 1s peak and (e) Si2p peak of APDMES-TiW. (f)
High-resolution XPS N1s peak of DA-TiW.

Figure 2.5a showed no N1s peak appeared on the control TiW, P2p and Si2p being not
detected. Figure 2.5b and Figure 2.4c showed the high-resolution XPS peaks of N1s and P2p
of APPA-TIW surface. Due to the dissymmetry of the N1s, two contributions seem to be
present on the high-resolution N1s spectra of APPA-TiIW, which were associated with a free
amine -NH2 group at 399.8 eV and protonated amine -NHs* group at 401.7 eV,

respectively[49], [50].

High-resolution XPS spectra of the P2p confirmed phosphonic acid functionalization, the
binding energy is considered as a good indicator of the covalent attachment of the phosphonic
acid group with TiW moiety. Indeed, in the literatures, it has been reported the evolution of
the binding energy of the P2p band is a reliable indicator to evaluate the grafting process of
the acids. The P2p peak is centered at 134.1 + 0.5 eV as expected for the non-deprotonated —
POsH:> acid[51]-[53]. It is generally accepted that the P2p binding energy of the phosphonic
head groups [POn(OH)m]* depends on the number of O atoms bonded to the P atom and on the
n/m ratio. Here, n is the “free” O ligands (as shown in the blue circle) while m is the covalent
bound OH ligands (as shown in the red circle). The shift of P2p peak is associated with the
deprotonation of the terminal P-OH, which increases the n/m ratio leading to a decrease in the
binding energy. In our work, after grafting on TiW, the P2p band is shifted at 133.2 eV. The
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shift to a lower binding energy seems to be due to a full or partial deprotonation of terminal P-
OH groups upon coordination with the TiW surface and the corresponding formation of a
negative charge on the phosphate headgroup. In other words, this shift seems to indicate the
presence of the deprotonation, which leads to the occurrence of P-O-TiW bonds. The
observed P2p shift of 0.9 eV here is in agreement with typical shifts reported for phosphonic
acids on metal oxide surfaces[51]-[53]. The scheme of chemical shift of P2p peak and
covalent bonding of APPA on TiW is shown in Figure 2.6.

non-deprotonated APPA deprotonated APPA

NH, P2p 134.1 eV NH, P2p 133.2 eV

o N
()

TiW Tiw

Figure 2.6 The scheme of chemical shift of P2p peak and covalent bonding of APPA on TiW.

From high-resolution N1s spectra of APDMES-TiW, two peaks are observed at 399.7 eV and
401.7 eV (Figure 2.5d). These contributions were again assigned to -NH and -NHs3"
groups[49], [50]. From high-resolution Si2p spectra of APDMES-TiW (Figure 2.5¢e), a Si2p
peak was observed at 101.3 eV and assigned to the Si-O linkage of APDMES to the TiW
surface. The covalent attachment of a monofunctional organosilane is the result of a single
condensation reaction to metal oxide surface. Therefore, the silicon atom of the organosilane
is linked with a single oxygen atom and therefore the binding energy is lower than the one
measured on silica or multifunctional silanes[49], [54], [55]. The high-resolution N1s XPS
spectra of DA-TiW displayed two peaks at a binding energy of about 399.7 eV and 401.7 eV
(Figure 2.5f), which are also attributed to the NH2 and -NH3* groups.

It has been reported that the bonding between an amine and a surface bound hydroxyl is much
weaker than any other bonding, and rinsing with the solvent easily removes physisorbed
molecules[9], [56]. Here we therefore tend to neglect the interaction of the molecule with
TiW via the amine with TiW. However, we did not directly verify this possibility. Facing this
issue, amine molecules without phosphonic acid, silane or catechol groups could be used such
as propylamine (CH3CH.CH2NH) or 3,3,3-trifluoropropylamine (CFzCH,CH>NHz). CH3 and
CF3 groups are not active, which would help to verify the interaction between the amine and
TiW.
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Figure 2.7 High-resolution XPS of O1s components of (a) control TiW, (b) APPA-TiW, (c) APDMES-
Tiw and (d) DA-TiW.

The high-resolution O1s spectrum of different organolayers coated on metal oxide surface
have been reported before. The binding energy of the components depends on the type of
organolayers grafted on the surface[10], [32]. Figure 2.7a shows the high-resolution O1s XPS
component of the control TiW. The FWHM of the oxygen contribution was set to 1.4 eV due
to the metal-O contribution. Such a FWHM imposes at least three Ols peaks for correct
fitting (R? above 0.969). Ti and W are very different elements, so two contributions are
expected for the Ol1s. However, we decided to deconvolute the Ol1s with only one
contribution. The peak at 530.5 eV was assigned to lattice oxygen from the metal oxides. The
peak at 531.3 eV was assigned to the chemisorbed oxygen caused by surface hydroxyl,
respectively. The other weak peak at higher binding energy represents the surface oxygen
contamination. In addition, it could be seen that the metal-O bonding oxygen was observed
for all surfaces after functionalization also. However, in Figure 2.7b, the peak at 531.6 eV was
assigned to P-O-metal and P=0. The peaks located at 532.8 eV is ascribed to P-OH species. In
our case, the ratio of P=0 oxygen contribution over the one of P-OH should be 0.5 for the
pure APPA powder. However, after grafting on TiW, the ratio between these two components
is increased to 4.8, which results from the transformation of the P-OH bonds into P-O-metal
bonds. Thus, we propose that the molecule bonds on the surface via the two deprotonated OH
groups while the P=0 is not directly bonded to the surface[10], [57], [58]. The Ol1ls XPS
spectrum of APDMES-TiIW was resolved into only two components (Figure 2.7c). Besides
the metal-O bonding oxygen, the peak at 531.7 eV was attributed to oxygen atoms in surface
hydroxyl or Si-O-metal species, which is agreement with the other studies[10], [59], [60]. As
expected, no O1s peak assigned from Si-O-Si at higher binding energy were observed as we
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have used a monovalent silane. In Figure 2.7d, the peak at 531.6 eV was assigned to metal-O-
C. The peak located at higher binding energy (533.0 eV) is ascribed to oxygen bonded to
aromatic carbon[32], [61]. A variety of binding mode between the catechol molecules and
oxide surface have been studied before. Although bidentate mode of attachment was referred
to as the stable structure, we proposed that monodentate and bidentate complexes co-exist on
the surface because of the free catechol -OH, which a monodentate mode means that only one
of catechol-OH moiety is involved to metal atom[62].

ToF-SIMS analysis was also used to characterize three organolayers functionalized TiW with
the aim of confirming XPS results thanks to the molecular information brought by the mass
detection. However, please note that new samples were specifically prepared, which could
explain some lack of consistency between the two sets of surface analysis results. Negative
mode spectra (Figure 2.8a-d) indicate first an increase in relative intensity of the nitrogen
content for the APPA, APDMES and DA modified TiW compared to the TiW (as displayed
by the CN™ peak detected at m/z 26.00, this peak being for the most part related to CoH>™ at
m/z 26.02 for the control sample).
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Figure 2.8 Negative mode (a-d) and positive mode (e-h) ToF-SIMS spectra of control TiW, APPA-TIW,
APDMES-TiW and DA-TiW in the ranges of m/z 0-100 (negative mode) and m/z 100-160 (positive
mode).

A strong relative intensity for the phosphonic acid group characteristic peaks (PO2" m/z 62.97
and POz m/z 78.97) is specifically detected for the APPA-TiW[63]. Positive mode spectra
display a strong relative intensity of peaks related to Ti such as peaks at m/z 47.95 and m/z
63.94 for Ti* and TiO*, respectively but also W related peaks (data not displayed). ToF-SIMS
IS sensitive to the top layers, which indicates that TiW substrate is significantly detected and
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thus not fully covered with the intended surface modification. An increase in the relative
intensity of the peak at m/z 30 (CH4N") is noticeable (data not shown here). Contamination is
also detected such as aromatic peaks at m/z 77.04, 91.05, 105.07, 115.05 etc. corresponding to
CeHs", C7H7*, CsHo*, CoH7*, respectively (Figure 2.8e-h). Nitrogen-based contamination has
been also detected at the surface of the APPA-TIW sample at m/z 130.15. APDMES and DA
molecules information related to the functionalization was more clearly detected in the
positive mode. At the surface of APDMES-TiIW, peaks were detected at m/z 116.09
(CsH14NSI™), 133.08 (CsH1sNOSi*). At the surface of DA-TiIW, a peak is detected at m/z
154.08 that corresponds to M+H". Please note that a peak was also detected in the negative
mode at m/z 152.06 that corresponds to M-H" (data not displayed).
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Figure 2.9 () ATR-FTIR spectra of control and three organolayers functionalized TiW surface. (c)
Enlarged spectrum of the APPA-TiW substrate from 950 cm™ to 1300 cm™. (c) Enlarged spectrum of
the APDMES-TiW substrate from 1300 cm™to 1200 cm™.

ATR-FTIR spectra of APDMES-TiW, DA-TIW and APPA-TIW surfaces are presented in
Figure 2.9a. It shows intense peaks at 1000 cm™ resulted from the metal oxide stretching
vibration mode. For the APPA-TiW substrate, the absorbance peaks at around 1100 cm™
developed which can be assigned to symmetric valence bands of salts of alkylphosphonic
groups. The presence of the stretching in the spectrum indicates the deprotonation of the
phosphonic acid group. A broad band at 1250 cm™ is assigned to the P=0 stretching mode
from the free P=0 groups of molecules. It also indicated that APPA bonding to TiW surface
occurred via the two deprotonated OH groups while the P=O does not directly bond to the
surface, which is agreement with other studies reporting that the bonding mode of
phosphonate to the metal oxide surfaces occurs via a bidentate bonding (Figure 2.9b)[64],
[65]. The intense peak of APDMES-TiW around 1260 cm™ (Figure 2.9¢) was attributed to the
Si-CHz bend from the monovalent molecule and confirmed the presence of APDMES on
TiWI[66].

It has been reported that dopamine can be oxidized and that it can self-polymerize
spontaneously under alkaline conditions (pH > 7.5) with oxygen as the oxidant. To achieve a
polydopamine film on substrates, the concentration of dopamine should be higher than 2
mg/ml. When dopamine is added into an alkaline solution, the polymerization of dopamine
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immediately occurs, causing a color change from colorless to light brown, and finally turning
to deep brown with the reaction time[29], [30]. TiW substrate was also functionalized by
polydopamine under the same conditions. Dopamine was dissolved in a Tris-HCI buffer
solution (10 mM, pH 8.5) to prepare the dopamine solution (2mg/ml) prior to further
functionalization. TiW substrate was immersed in the solution for 24 hours. The surface of the
substrate turned deep brown. Then the substrate was rinsed under ultrasound in DI H2O for
5min, and dried with N> flow. The polydopamine modified TiW substrate was measured by
XPS and ATR-FTIR, as shown in Figure 2.10.
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Figure 2.10 (a) XPS survey scan of polydopamine-TiW. (b) ATR-FTIR spectra of control Tiw and
polydopamine-TiW.

It can be seen that C1s peak increased and N1s peak appeared obviously. However, no Ti and
W element peaks can be measured. It seems to indicate that the polydopamine formed a thick
film on the TiW substrates. From ATR-FTIR spectra of polydopamine modified TiW
substrate the broad absorption bands from 1600 cm™ to 1510 cm™ were attributed to the
overlap of the C=C resonance vibration and N-H bending vibration in aromatic rings, which
indicated the existence of polydopamine on the TiW surface due to the polymerization. Our
goal was to avoid DA polymerization on TiW substrates. The reaction was made under
nitrogen atmosphere and the solvent is degassed ultrapure water (pH < 7). The oxidation and
polymerization of dopamine could be successfully avoided by limiting the oxidant media and
controlling the pH values[31], [32]. From the XPS, IR and ToF-SIMS results, the
polydopamine signals were not detected on DA-TiW surface.

2.3.3 Stability of three organolayers

The XPS and ToF-SIMS analysis demonstrated the successful attachment of the three
molecules to TiW. Next, we wanted to address the stability of the resulting organolayers. To
this aim, modified substrates were immersed in 70°C DI water and XPS atomic (at. %) were
determined as a function of immersion time. The change of different elements concentration
is also listed in Table 2.1. The ratios of N1s at. % to (Ti2p at. % +W4f at. %) were calculated
based on the changes in the elemental concentrations, as shown in the Figure 2.11a. The N1s
at. % / (Ti2p at. %+WA4f at. %) ratio of APPA-TIW decreased from 0.55 to 0.38 in the first 15

91



Chapter 2. Surface chemical functionalization of titanium tungsten substrate with silane, phosphonic
acid or ortho-dihydroxyaryl based organolayers

min and then it remained constant for the next 45 min. It also showed that the N1s at. % /
(Ti2p at. %+WAT at. %) ratio of DA-TIW decreased continuously from 0.42 to 0.19 up to 60
min. However, the changes in the N1s at. % / (Ti2p at. %+WA4f at. %) ratio of APDMES-TiW
from 0.47 to 0.02 and then it remained constant for at least of 60 min, which a rapid and
significant decrease was observed after 15 min. In Table 2.1, it can be noted that the
contributions of the substrate (W at. % and Ti at. %) increased after 60 min immersion from
2.5t0 5 % for Ti at. % and from 5 to 10 % for W at. % suggesting that the contribution of the
substrate increased. According to the N1s atomic percentage (at. %), we proposed that
approximately 95 % of the APDMES layer is removed after immersion of the sample
(reference: APDMES-TiW without immersion). A maximum of 30 % of the APPA layer and
50 % of the DA layer were desorbed as well. (Figure 2.11b). The Si2p at. % / (Ti2p at. %
+W4f at. %) ratio for APDMES-TIW and the P2p at. % / (Ti2p at. % +WA4f at. %) ratio for
APPA-TIW decreased after immersion similarly to the N1s at. % / (Ti2p at. %+WA4f at. %)
ratio. (Figure 2.11c, d). These observations suggest that the rate and amount of molecules
desorbed for APDMES-TIW is the highest. DA-TiW seems slightly less stable than APPA-
TiW although the atomic percentage of Ti and W is similar for the two modifications after 60
min immersion.
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Figure 2.11 (a) N1s at. %/( Ti2p at. %+ W4f at. %) ratio for the APPA- Tiw, APDMES-TiW and DA-
TiW as a function of immersion time in water at 70°C. (b) N1s atomic percentage (at. %) of APPA-
TiW, APDMES-TiW and DA-TiW before and after 60 min immersion in H,O at 70°C. (c) Si2p at. %/
(Ti2p at. % +WA4f at. %) ratio of APDMES-TiW in H,O at 70°C as a function of immersion time. The
inset shows the Si2p concentration change. (d) P2p at. %/ (Ti2p at. % + WA4f at. %) ratio of APPA-
TiW DI H,0 at 70°C as a function of immersion time. The inset shows the P2p concentration change.
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In some comparative published studies, the stability of different organolayers on metal oxide
have been reported. The exact state of bonding responsible for the stability of organolayers on
metal oxides is still a matter of debate. It has been claimed that Si-O-Ti is more stable than P-
O-Ti[10], [67]. However, M. J. Stevens suggested that the stability was rather in fact due to
the lateral crosslinking of multifunctional organosilane[68]. In our case, lateral cross linking
was not possible as we have used a monovalent silane. We observed that 95% of the
APDMES layer was removed after 15 min of immersion time in 70 °C H,O suggesting that
the Si-O-Ti or Si-O-W bonds are some-how labile and that the stability reported by several
authors may rather be due to lateral cross linking. Different phosphonate layers on indium-tin
oxide, cobalt chromium alloys and aluminum surfaces were found to be stable and strongly
bound[69]-[74]. In addition, it has been showed that tungsten oxide surface can react with
phosphonate molecules to form the covalently attach tethered by phosphonate linkers. And the
P-O bonds (3.5 eV/bond) on tungsten/tungsten oxide seems to be twice as strong as S-Au
attachments (1.7 eV/bond)[27]. Here the rate and amount of molecules desorbed for APPA-
TiW are lower compared to the other two layers which maybe resulted from the stronger P-O-
Ti and P-O-W covalent bonds. For DA layer, we proposed that monodentate and bidentate
complexes of catechol co-exist on the surface. In the literature, the bidentate attachment is
considered more stable than the monodendate complex. It may well be that after immersion in
70 °C H20, the relatively unstable monodentate complexes may desorbed from the surface
continuously[32], [62], [75].

2.4 Conclusions

We developed three different organolayers on TiW, which has been analyzed by XPS, ToF-
SIMS and IR. Firstly, XPS, IR and ToF-SIMS spectroscopy seem to sustain the formation of a
covalent attachment between APPA and TiW. Similarly, the bonding of APDMES layer
seems to occur through the covalent bonds between the monovalent silane and oxide. Our
results tend to indicate that DA binding on TiW leads to monodentate and bidentate
configurations grafting. Secondly, the stability of three organolayers on TiW was also
investigated. Based on XPS, the good stability of APPA layer is mainly attributed to stronger
P-O-W and P-O-Ti covalent bonds, stability of DA layer on TiW was inferior to the stability
of APPA layer probably because of the instability of monodentate mode. Extensive
desorption of APDMES molecules occurred within 15 min of immersion in 70 °C water due
to the lack of lateral cross linking in the layer. As a novel functional metal oxide, quite good
stability of phosphonic acid organolayer functionalized TiW has important significance in
terms of further functionalization and integrated multi-materials patterned substrate devices.
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3 Orthogonal chemical functionalization  of
patterned Au/TIW substrate for selective
Immobilization of nanoparticles

3.1 Introduction

Orthogonal self-assembly of different molecules onto patterned substrates was first proposed
in 1989. It offered a versatile method for controlling the interfacial properties of multi-
material pattern substrates[1], [2]. Orthogonal chemical functionalization is based on organic
molecules bearing different anchoring groups that will react selectively with different
materials on the patterned substrates[3]-[5]. If molecules used for orthogonal
functionalization are truly selective for each material, it offers the perspective of controlling
and modifying the characteristics of each material surfaces and incorporating new
functionalities on defined nanofabricated devices. For example, the selective binding of
colloids or biomolecules onto an array of predefined regions was achieved by the orthogonal
functionalization of each materials of the surface[6]-[14].

Different combinations of chemical compounds and inorganic substrates have been used in
such surface functionalization protocols, such as metal oxide/SiO2[4], [15], Au/metal oxide[1],
[16], [17] or Au/SiOo[5], [10], [18]-[20] templates selectively functionalized with thiols,
silanes, phosphonic acids or carboxylic acids.

Among various potential inorganic materials, TiW is well mastered in electronic industry,
where it is used as an effective diffusion barrier[21]-[29]. TiW is implemented in
nanoelectronic devices on an industrial scale, with a very high control on its characteristics. In
this perspective, TiW could be used in chemical sensors or biosensors, either (1) as core
material for nanotransducing zone (e.g. in nanoelectronic chemical sensors), or (2) for
covering surfaces outside of nanotransducing zone. In the case (1), TiW has to be
functionalized with molecular probes. It has already been shown that TiW can be modified
with small organic molecules by surface functionalization in chapter 2. The study has for
instance demonstrated good stability of phosphonic acid organolayers on TiW. In case (2)
TiW could be functionalized with a passivation layer repelling molecules to be detected, as
already presented by F. Palazon et al[10]. In this approach, it would be useful to functionalize
differently the transducing zone (e.g. Au or SiO2) and the TiW zone. Orthogonal
functionalization of a substrate including TiW and another material should therefore be
studied.

In this work, we present orthogonal chemical functionalization of Au patterns on TiW, as a
first practical assay involving TiW and another material. Thiol based chemistry and
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phosphonic acid based chemistry were used for the selective derivatization of Au and TiW,
respectively. Orthogonal chemical functionalization was verified by direct characterization
using X-ray photoelectron spectroscopy (XPS), polarization modulation infrared reflection
absorption spectroscopy (PM-IRRAS) and time-of-flight secondary ion mass spectrometry
(ToF-SIMS) mapping. Then Au/TiW patterned substrates were functionalized with mercapto-
undecamine. Thanks to the orthogonality of thiol/Au versus phosphonic acid/TiW reactions,
only the gold features were modified leading to amine derivatized surface. It allowed
localizing carboxy-functionalized nanoparticles by electrostatic interaction on gold with a
selectivity above 10 compared to TiW.

3.2 Experimental section

3.2.1 Materials and patterns

Chemicals are of reagent grade commercially available. 1H,1H,2H,2H-Perfluorodecanethiol
(F-thiol) 97% was purchased from Sigma-Aldrich. 1H,1H,2H,2H-(Tridecafluorooct-1-
yl)phosphonic acid (F-phosphonic acid) was purchased from SiKEMIA. Dichloromethane
(DCM) 99.9% was purchased from Sigma-Aldrich then degassed and dried over molecular
sieves. Isopropanol 99.9% was purchased from Fluka. 11-mercapto-1-undecylamine (MUAM)
99% and ethanol 99.8% were purchased from Sigma-Aldrich. Carboxylatex particles (300 nm
diameter, 3% solids, product code: 02131) were purchased from Ademtech. Ultrapure water
(18.2 MQ) used for all the experiments was obtained by VEOLIA water system.

Macroscale patterned Au/TiW substrates S1 and S2 were prepared using the following
protocol: the surfaces consisted of a 2 cm? TiW substrate onto which half of the surface was
covered by gold thin film (5 nm chromium and 200 nm gold).

Microscale patterned Au/TiW substrates S3, S4 and S5 were prepared using UV lithography
process to define squares with typical dimensions ranging from 100 pm to 600 pm.
Chromium (5 nm) and gold (50 nm) were deposited by electron beam evaporation.

After lift-off, the samples were cleaned by oxygen plasma treatment (HARRICK) at the
oxygen flow rate of 14 mL/min, RF power level of 38 W for 5 min to ensure that no residual
resist remained on the surface. The patterned substrates pictures are shown in Figure 3.1. The
UV lithography process and materials deposition conditions are shown in Annex B.
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Figure 3.1 Optical photos of macropatterned substrates S1 and S2 (a). SEM image of microscale
patterned substrates S3, S4 and S5 (b).

3.2.2 Chemical functionalization

Patterned substrates S1 and S3 were functionalized by F-thiol using the following protocol:
substrates were immersed in 25 ml dried DCM containing 100 ul F-thiol (14 mM) for 48
hours. Then the samples were rinsed with DCM for 5 min under ultrasound (Branson, 42 kHz,
100 W) followed by a stream of ultrapure water and dried with nitrogen flow.

Patterned substrates S2 and S4 were functionalized by F-phosphonic acid using the following
protocol: substrates were immersed in 20 ml ultrapure water containing 8.5 mg F-phosphonic
acid (1 mM) for 16 hours. The substrates were then rinsed with isopropanol for 5 min under
ultrasound (Branson, 42 kHz, 100 W) followed by a stream of ultrapure water and dried with
nitrogen flow.

Patterned substrates S5 were functionalized by MUAM using the following protocol:
substrates were immersed in a previously degassed 1 mM ethanolic solution of MUAM for 4
hours and then rinsed 5 min in ethanol under sonication (Branson, 42 kHz, 100 W) to remove
potentially adsorbed multilayers, followed by 5 min rinse in ultrapure water and then dried
under nitrogen flow.

Nanoparticles trapping: 20 pL of carboxylate-functionalized nanoparticles solution were
dissolved in 2 ml of PBS-1X adjusted to pH 7.4 in a centrifuge tube. The S5 substrates
functionalized by MUAM were maintained vertically in the centrifuge tube fully immersed in
the nanoparticles solution without agitation at room temperature. No sedimentation of
colloidal dispersions was observed overnight. The immobilized S5 samples were rinsed twice
with ultrapure water and dried under nitrogen. A control sample without functionalization was
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immersed in a solution of carboxylate-functionalized nanoparticles overnight and rinsed in the
same way.

3.2.3 Characterization

X-ray Photoelectron Spectroscopy (XPS). XPS measurements on macropatterned substrates
S1 and S2 were performed using a focused monochromatized X-ray source (Al Ko 1486.6
eV). Spectrum acquisitions were performed under ultrahigh vacuum conditions (UHV, 107°
Torr). Take-off angle was 90° relative to the substrate surface. The pass energies were 100 eV
and 20 eV for wide-scan and high-resolution elemental scans, respectively. The data reduction
was performed with CasaXPS software. The dimensions of TiW and Au patterns were largely
higher than XPS beam, so that each material of a same substrate could be characterized
individually. For each substrate, at least three measurements were performed on different
locations of a same material, thus providing triplicate quantitative data for respectively TiW
and Au of the same substrate.

Polarization-modulation infrared reflection absorption spectroscopy (PM-IRRAS). PM-
IRRAS spectra was recorded on macroscopic substrates S1 and S2 using a Nicolet 6700 FTIR
spectrometer from Thermo Scientific coupled to a Hinds Instrument PEM-100 ZnSe
photoelastic modulator driven at 50 kHz (polarization switch from p to s at 100 kHz). The
acquisition and spectra analysis parameters, as well as theoretical elements about PM-IRRAS
have been detailed elsewhere. The dimensions of TiW and Au macropatterns were largely
higher than IR beam, so that each material of a same substrate could be characterized
individually.

Time-of-flight secondary ion mass spectrometry (ToF-SIMS). ToF-SIMS mapping
measurements were performed on micropatterned substrates S3 and S4 with a Physical
Electronics TRIFT 11l instrument (Physical Electronics, Chanhassen, MN) operated with a
pulsed Au ion gun (ion current of 2 nA) over a 300 um x 300 pm area. The ion dose was kept
below the static conditions limits. Data were analyzed using WinCadence software. Mass
calibration was performed on hydrocarbon secondary ions. For each substrate, at least three
measurements were performed on different locations, thus providing triplicate quantitative
data and images.

Scanning Electron Microscopy (SEM). SEM images were performed on micropatterned
substrates S5 before and after nanoparticles trapping with a Mira3 SEM from TESCAN. It
was operated with an acceleration tension of 5 kV, a current beam of 250 pA with a detection
of secondary electrons. SEM image analysis with ImageJ software allowed us to compute
guantitative data. At least three measurements were performed on different locations, thus
providing triplicate quantitative images.
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3.3 Results and discussion

3.3.1 Orthogonality of macroscale substrates
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Figure 3.2 (a) Scheme of a macropatterned Au/TiW substrate functionalized with F-thiol. The
corresponding XPS survey spectra measured on gold and TiW are displayed in (b) and (c). (d) Scheme
of a macropatterned Au/TiW substrate functionalized with F-phosphonic acid. The corresponding XPS

survey spectra measured on Au and TiW are displayed in (e) and (f).

The macroscale patterned Au/TiW substrates were functionalized by either 1H,1H,2H,2H-
perfluorodecanethiol  (F-thiol, Figure 3.2a) or (1H,1H,2H,2H-Tridecafluorooct-1-
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yl)phosphonic acid (F-phosphonic acid, Figure 3.2d) and were analyzed using XPS. Survey
and high-resolution spectra were recorded for areas corresponding to either Au or TiW.
Figure 3.2b and Figure 3.2c show the XPS survey spectra of Au and TiW areas of macroscale
substrates after incubation with perfluorinated thiol. On Au, fluorine was clearly evidenced by
the F1s and FkiL peaks, showing the presence of the perfluorinated thiol. On the contrary,
fluorine could not be observed on TiW. After incubation of the macroscale substrate with F-
phosphonic acid, F1s and FxiL peaks were only observed on TiW. Such peaks were not
observed on Au (Figure 3.2¢, f).
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Figure 3.3 High-resolution XPS C1s (a) and F1s (b) spectrum of Au region for F-thiol functionalized
patterned substrates. High-resolution XPS C1s (c) spectrum of TiW region for F-thiol functionalized
patterned substrates. High-resolution XPS C1s (d) and F1s (e) spectrum of Au region for F-
phosphonic acid functionalized patterned substrates. High-resolution XPS C1s (f) spectrum of Au
region for F- phosphonic acid functionalized patterned substrates.

High resolution XPS spectrum of F1s and C1s confirmed the presence of F-thiol on Au area
only (Figure 3.3a, b). Indeed, after incubation with perfluorinated thiol, the contributions at
293 eV, 291.5 eV and 290 eV were only observed on Au area and can be attributed to CFs,
CF2-CF2 and CH2-CF», respectively. On TiW area, only the contribution at 284.6 eV was
observed for the Cls and corresponded to hydrocarbon (Figure 3.3c). Similarly, after
incubation with F-phosphonic acid, high resolution XPS spectrum of F1s and C1s confirmed
that the perfluorinated molecule is only present on TiW area (Figure 3.3d, e). Indeed, the
contributions at 293 eV, 291.5 eV and 290 eV attributed to CFs, CF.-CF, and CH>-CF> were
only observed on TiW. On Au, only hydrocarbon contribution (284.6 eV) was observed
(Figure 3.3f).
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Figure 3.4 (a) PM-IRRAS spectra recorded on Au of patterned substrates functionalized by F-thiol. (b)
PM-IRRAS spectra recorded on TiW of patterned substrates functionalized by F-phosphonic acid.

Figure 3.4a displays the PM-IRRAS spectra corresponding to the Au area of macroscale
patterned substrate functionalized with F-thiol. It has been found that C-F stretching
vibrations region from 1000 cm™to 1600 cm™ present on Au. Additionally, on TiW no C-F
stretching vibrations peaks were observed indicating that F-thiol was below PM-IRRAS
detection limit on TiW. PM-IRRAS spectra of the TiW areas following incubation with F-
phosphonic acid is displayed in Figure 3.4b. A broad peak at around 1080 cm™ was attributed
to the P-O bend[30], [31]. In detail, bands at 1240 cm™ and 1140 cm™ were assigned to
asymmetric and symmetric CF, stretching vibrations. Peaks at 1320 cm™and 1366 cm™ were
referenced as axial CF; stretching vibration bands vaxCF2[32], [33].

3.3.2 Orthogonality of microscale substrates

100 pm

Figure 3.5 ToF-SIMS maps (300 x 300 um?; scale bar, 100 um) of Au’, Ti*, CF*, F ions of
micropatterned Au/TiW substrates functionalized with F-thiol (a-c) and F-phosphonic acid (d-f).
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In order to test the orthogonality of functionalization on the microscale patterned substrates,
fluorine mapping was conducted using ToF-SIMS, which has been shown to be especially
well-suited for the characterization of chemically patterned surfaces[34], [35]. As shown in
Figure 3.5, CF" and F" were imaged on micropatterned substrates after incubation with F-thiol
or F-phosphonic acid. In the case of F-thiol functionalization, the F, CF* and Au ions
originated from the same areas, whereas on the surrounding TiW the fluorine associated ions
had weak intensities (Figure 3.5a-c). Opposite observations can be drawn when the substrate
was incubated with F-phosphonic acids: F- and CF* signals are issued from the TiW areas
(Figure 3.5d-f). It demonstrates the good orthogonality of the functionalization.

3.3.3 Nanoparticles trapping

It has been shown that thiol molecules could be selectively addressed on Au areas rather than
TiW ones. In the following, we demonstrate that thiol organolayers on Au can be used for the
selective capture of nanoparticles on Au/TiW patterned substrates.
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Figure 3.6 PM-IRRAS spectra of Au functionalized by MUAM.

AU/TiIW micropatterned substrates were functionalized with 11-mercaptoundecylamine
(MUAM). The Au area of Au/TiW surface were characterized by PM-IRRAS (Figure 3.6).
The spectrum shows bands at 2922 cm™ and 2851 cm™ assigned to the asymmetric and
symmetric vibration of CH.. Furthermore, the position of the symmetric and asymmetric CH>
stretching bands indicated the close-packing of the alkyl chains in the SAMs. A peak at about
1460 cm™ can be assigned to the CH> scissor vibrations. It also showed N-H deformation
vibration modes at 1640 cm™ and 1544 cm™. These bands are associated with the protonated
form of the primary amine group NH3"[36].
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Figure 3.7 High-resolution XPS S2p (a) and N1s (b) peaks for MUAM functionalized Au.

High-resolution XPS S2p spectrum of Au areas functionalized by MUAM can be attributed to
two S2p doublet with the main signals S2ps; centered at 162.2 eV and 163.9 eV (Figure
3.7a). The first doublet can be assigned to sulfur bound to Au atom, and the second indicates
unbound sulfur, present despite the intensive rinsing of samples[37], [38]. Due to the
dissymmetry of the N1s, two contributions seems to be present on the high-resolution N1s
spectra, which were associated with a free amine -NH> group at 399.8 eV and protonated
amine -NHs" group at 401.7 eV, respectively (Figure 3.7b)[39]. After functionalization by
MUAM, the chemical compositions of different elements are listed in Table 3.1.

Cls S2p Au4f N1s

MUAM-Au 4707+06 126+0.1 50.08+05 1.58+0.2

Table 3. 1XPS determined atomic concentrations (%) of MUAM functionalized Au.

These results in combination with the selectivity of thiol for gold vs TiW allowed the
selective trapping of nanoparticles onto Au features on TiW by electrostatic interactions.

Carboxylated nanoparticles were incubated with MUAM modified micropatterned Au/TiW
substrates. The experiment was conducted at pH 7.4. At this pH value, amines were expected
to be protonated while carboxyl groups of the nanoparticles were expected to be deprotonated
(pKa of amines and carboxylic acids are around 9-10 and 3-4 respectively). The
functionalized patterned substrates were vertically immersed in carboxyl-nanoparticles
solution overnight at room temperature and then rinsed with DI water. A control sample
corresponding to a non-functionalized surface was also immersed in the same solution and
rinsed in the same way. After washing, scanning electron microscope (SEM) images were
taken and analyzed with ImageJ software to compute the specific trapping of colloids on the
Au regions and non-specific adsorption on surrounding TiW.
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Figure 3.8 SEM images of colloid trapping based on electrostatic methods on the MUAM
functionalized Au/TiW surfaces (a-d). Schematic representation of functionalized nanoparticles
immobilized on the micropatterned substrates selectively functionalized by MUAM (e). Histogram
presenting the surface coverage by nanoparticles on Au and TiW regions of the functionalized
patterned surface (f).

The results of the selective trapping of nanoparticles on patterned substrates are summarized
in Figure 3.8. It shows that non-specific adsorption on control sample corresponding to a non-
functionalized TiW areas is generally low. Indeed, since nanoparticles deposition was
performed at pH=7.4, the TiW surface as well as the carboxyl functionalized nanoparticles
were expected to be negatively charged. Indeed, the point of zero charge of TiW and the pKa
of carboxylic acids are around 3 and 4, respectively. Electrostatic repulsion probably accounts
for the low non-specific adsorption of the colloids onto the TiW surface. Most importantly,
the number of nanoparticles on MUAM modified Au areas were found to be one order of
magnitude higher than the one observed on TiW. These results showed the efficiency of
surface chemical functionalization to selectively anchor nanoparticles onto predefined Au
regions of a heterogeneous TiW substrate.
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3.4 Conclusions

In this chapter, we reported the selective and independent chemical functionalization of TiW
and Au areas on Au/TiW patterned substrates thanks to the orthogonality of phosphonic acid
and thiol molecules reactivity. Direct characterizations using XPS, PM-IRRAS and ToF-
SIMS mapping provided evidence of the chemical orthogonality. Nanoparticles were
precisely anchored on Au microscale patterns through selective chemical functionalization of
the Au allowing for electrostatic trapping. The specific capturing of nanoparticles on Au was
increased by one order of magnitude in respect to non-specific adsorption on TiW. This
method is being developed to eventually investigate the anchoring of nano-objects or
biomolecules onto large arrays of micro and nanoscale patterns.
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4 Orthogonal chemical functionalization of Au/SiO»/
TIW patterned substrates

4.1 Introduction

The increasing number of applications of nanotechnology stresses the importance of
designing nanoscale features of various chemical, biochemical or physical properties[1]-[4].
In this scope, some strategies have been developed to achieve chemical patterns. In this scope,
some strategies have been developed. For example, microcontact printing transfers organic
compounds on defined positions of a substrate by stamping[5], [6]. Self-assembled monolayer
can be patterned by electron or extreme UV irradiation lithography[7], [8]. However, on
multi-material patterned substrates, one can take advantage of each material for different
chemical functions, to achieve site selective chemical functionalization. The so-called
orthogonal chemical functionalization was first proposed by G. M. Whitesides et al. in
1989[9]. It offers a versatile method for controlling the interfacial properties of each material
on patterned substrates. Orthogonal chemical functionalization is based on the combination of
1) top-down fabrication (e.g. optical or electronic lithography, nanoimprint) enabling to
implement spatially resolved patterns of different inorganic materials on a substrate; and 2)
bottom-up formation of organolayers by spontaneous assembly of molecules on each material.
Each inorganic pattern made of a given material exhibits a specific affinity for one or several
molecules bearing particular chemical moieties. If the chosen molecules are truly selective of
each chosen material, it becomes possible to modify the surface chemical characteristics of
each type of pattern[10]. In this situation, geometric precision of spatial addressing is mainly
driven by the resolution of the lithographic technology used for fabricating the inorganic
patterns. Moreover, the method takes advantage of alignment possibilities associated with
lithography: it enables to locate in an absolute positioning of the patterns on a given substrate.
It is therefore possible to envisage absolute positioning of nano-objects on predefined
positions, with a submicronic precision.

Various combinations of chemical compounds (thiols, silanes, phosphonic acids) and
inorganic substrates (Au, SiO2, metal oxides) have been reported for site selective chemical
functionalization. For instance, Au/SiO patterned substrates are the most common used
template, and selective attachment of thiols to gold and silanes to SiO: is exploited[11]-[16].
Au/metal oxides (TiO2, Al.Oz3) substrates[17], [18] functionalized with thiols and phosphonic
acids have also been achieved thanks to the selective attachment of the phosphonic acids to
metal oxides. However, it is worth noting that most of the studies are focused on the building
of two different organolayers on two-material patterned substrates. As far as we know, there
rare reports about building three different organolayers on a three-material patterned
substrate. Among various inorganic materials of interest, TiW used as a barrier layer material
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has already been reported in electronic devices. It is fully compatible with microelectronic
integrations and can be used as a potential functional membrane in nanoelectronic
transducer[19]-[27]. TiW thin films can be implemented on a production scale with stable and
reproducible chemical characteristics. TiW is therefore a material to be considered for
implementing complexe heterogeneous systems, such as nanoelectronic sensors. In chapter 2,
we show that TiW bearing surface bound hydroxyl groups could be modified with a stable
phosphonic acid layer. On the same type of hydroxylated TiW substrate, a monovalent silane
layer exhibited a poor stability in adequate conditions. A challenge arises from the fact that
there may be a competitive anchoring of silane and phosphonic acid on TiW covered with a
native oxide layer.

In this work, we report in what conditions three-material substrates can be orthogonally
functionalized with three molecules. Au/SiO2/TiW patterned substrates were functionalized
with thiol, phosphonic acid and monovalent silane. This was assessed by X-ray photoelectron
spectroscopy (XPS), infrared spectroscopy (IR), time-of-flight secondary ion mass
spectrometry (ToF-SIMS) mapping and contact angle on three-material substrates bearing
either macroscopic features (1 cm) and microscopic features (100 um) of each material.

4.2 Experimental section

4.2.1 Materials and patterns

Chemicals are of reagent grade commercially available. 1H,1H,2H,2H-Perfluorodecanethiol
(F-thiol) 97% was purchased from Sigma-Aldrich. (1H,1H,2H,2H-Tridecafluorooct-1-
yl)phosphonic  acid  (F-phosphonic  acid) 95% was obtained from SiKEMIA.
(Heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethylchlorosilane (F-silane) 95% was purchased
from abcr. Dichloromethane (DCM) 99.9% was purchased from Sigma-Aldrich then degassed
and dried over molecular sieves. Isopropanol 99.9% was purchased from Fluka. The ultrapure
water used for all the experiments was obtained by VEOLIA water system.

Macroscale patterned Au/SiO2/TiW substrates S1, S2 and S3 were prepared using the
following protocol: one third of the TiW substrate was covered by Au film. Another third of
the substrate was covered by SiO. film. The remaining third of the substrate remained
unchanged as uncovered TiW.

Microscale patterned Au/SiO2/TiW substrates S4, S5 and S6 were prepared using a two-steps
UV lithography process. Ti (5 nm) and Au (45 nm) were deposited by electron beam
evaporation. SiO2 (50 nm) was deposited by magnetron sputtering. After lift-off, the samples
were cleaned by oxygen plasma treatment (HARRICK) at the oxygen flow rate of 14 mL/min,
RF power level of 38 W for 5 min to ensure that no residual resist remained on the surface.
The patterned substrates pictures are shown in Figure 4.1. UV lithography process and
materials deposition conditions are shown in Annex B.
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Au

2cm

Figure 4.1 Optical photos of macropatterned substrates S1 S2 and S3 (a). Optical photos of
micropatterned substrates S4 S5 and S6 (b). Enlarged version of (b).

4.2.2 Chemical functionalization

Patterned substrates S1 and S4 were functionalized by F-thiol using the following protocol:
substrates were immersed in 25 ml dried DCM containing 100 ul F-thiol (14 mM) for 48
hours. Then the samples were rinsed with DCM for 5 min under ultrasound (Branson, 42 kHz,
100 W) followed by a stream of ultrapure water and dried with nitrogen flow.

Patterned substrates S2 and S5 were functionalized by F-phosphonic acid using the following
protocol: substrates were immersed in 20 ml ultrapure water containing 8.5 mg F-phosphonic
acid (ImM) for 16 hours. The substrates were then rinsed with isopropanol for 5 min under
ultrasound (Branson, 42 kHz, 100 W) followed by a stream of ultrapure water and dried with
nitrogen flow.

Patterned substrates S3 and S6 were functionalized by F-silane using the following protocol:
substrate was immersed in 25 mL dried DCM containing 10 uL F-silane (1 mM) for 48 hours.
Then the substrates were rinsed with DCM for 5 min under ultrasound (Branson, 42 kHz, 100
W) followed by a stream of ultrapure water and dried with nitrogen flow. After F-silane
grafting, substrates were immersed in 70 °C ultrapure water for 15 min. After removing the
samples were rinsed in ultrapure water and dried with nitrogen flow.
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4.2.3 Characterization

X-ray Photoelectron Spectroscopy (XPS). XPS measurements on macropatterned substrates
S1, S2 and S3 were performed using a focused monochromatized X-ray source (Al Ka 1486.6
eV). Spectrum acquisitions were performed under ultrahigh vacuum conditions (UHV, 107°
Torr). Take-off angle was 90° relative to the substrate surface. The pass energies were 100 eV
and 20 eV for wide-scan and high-resolution elemental scans, respectively. The data reduction
was performed with CasaXPS software. The dimensions of TiW and Au patterns were largely
higher than XPS beam, so that each material of a same substrate could be characterized
individually. For each substrate, at least three measurements were performed on different
locations of a same material, thus providing triplicate quantitative data for respectively TiW
and Au of the same substrate.

Contact angle measurements were performed on macroscopic substrates S1, S2, S3 with a
contact angle meter (Digidrop Goniometer, GBX, France) using the sessile drop method with
deionized water. At least five 0.6 pL deionized water droplets were used per material zones
on each substrate. For each material of a same substrate, obtained contact angle values
correspond to the average of the five droplets contact angle values.

The attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra were recorded
on macroscopic substrates S1, S2, S3 using a Thermo Nicolet 6700 spectrometer equipped
with an MCT detector cooled with liquid nitrogen. All spectra were obtained from averages of
256 scans at a resolution of 4 cm™. The dimensions of TiW, SiO2 and Au macropatterns were
largely higher than FTIR beam, so that each material of a same substrate could be
characterized individually.

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) mapping measurements were
performed on micropatterned substrates S4, S5, S6 with a Physical Electronics TRIFT 111
instrument (Physical Electronics, Chanhassen, MN) operated with a pulsed Au ion gun (ion
current of 2 nA) over a 500 pm x 500 um area. The ion dose was kept below the static
conditions limits. Data were analyzed using WinCadence software. Mass calibration was
performed on hydrocarbon secondary ions. For each substrate, at least three measurements
were performed on different locations, thus providing triplicate quantitative data and images.

4.3 Results and discussions

Each substrate was exposed to only one type of molecule to assess the ability of one molecule
to specifically bind to one single material, and not to bind with the other two materials of the
substrate.
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4.3.1 Orthogonality of macroscale substrates
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Figure 4.2 (a) Sketch of a macropatterned Au and SiO on TiW substrate after reaction with F-thiol.
Corresponding XPS survey spectra of Au (b), TiW (c) and SiO- (d) show that thiol only bonds to gold.
(e) Sketch of a macropatterned Au and SiO, on TiW substrate after reaction with F-phosphonic acid.
Corresponding XPS survey spectra of Au (f), TiW (g) and SiO (h) show that phosphonic acid only
binds to TiW. (i) Sketch of a macropatterned Au and SiO; on TiW substrate functionalized by F-silane.
Corresponding XPS survey spectra of Au (j), TiW (k) and SiO: (1) show that silane only binds to SiO..

Organolayers were implemented on macroscale patterned substrates. The macropatterned Au
and SiO2 on TiW substrates were functionalized by F-thiol (Figure 4.2a), F-silane (Figure
4.2e) or F-phosphonic acid (Figure 4.2i) and were analyzed using XPS. Survey and high
resolution spectra were recorded for each area corresponding to Au, TiW and SiOa. Figure
4.2b-d showed the XPS survey spectra of Au, TiW and SiO, areas of macropatterned
substrates after incubation with F-thiol. On gold, the presence of fluorine was clearly
evidenced by the F1s and Fki. peaks, showing the presence of the perfluorinated thiol. On the
contrary, fluorine peaks could not be observed by XPS on TiW and SiO». This suggested that
F-thiol was specifically grafted on the Au and not on TiW and SiO2. After incubation of the
macroscale patterned substrates with F-phosphonic acid, F1s and Fki. peaks were only
observed on TiW. Such peaks were not observed on Au and SiO» (Figure 4.2f-h). Phosphonic
acids modified selectively the TiW surface. After incubation with F-silane, intense F1s and
FkLL peaks were observed on SiO,. However, low intensity F1s peaks were also observed on
TiW (Figure 4.3a). Nevertheless, after immersion in 70 °C water for 15 min, the F1s peaks
disappeared on TiW, but did not decrease on SiO> (Figure 4.2j-1). Indeed, according to
chapter 2, the grafting of monovalent silane molecules on TiW is some-how labile. Therefore,
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site selective functionalization of SiO2 on Au/SiO2/TiW substrate can be achieved providing
that the monofunctional silane molecules can be removed from TiW by hydrolysis of the Si-
O-M bond.
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Figure 4.3 XPS survey spectra of TiW (a) and SiO: (b) regions on macropatterned substrates
functionalized by F-silane before immersion in 70°C ultrapure H-O.
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Figure 4.4 High-resolution XPS C1s and F1s spectrum of F-thiol functionalized Au (a, b), F-
phosphonic acid functionalized TiW (c, d) and F-silane functionalized SiO- (e, ).

High-resolution XPS spectrum of Fls and Cl1s confirmed that the fluorine component
observed in each case originated from perfluoromolecules as expected (Figure 4.4). These
results suggested that orthogonal chemical functionalization is possible.
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Figure 4.5 ATR-FTIR spectrum of (a) F-thiol functionalized Au, (b) F-phosphonic acid functionalized
TiW, (c) F-silane functionalized SiO..

ATR-FTIR spectra were recorded on macroscale patterned substrates after incubation with F-
thiol, F-phosphonic acid or F-silane. After incubation with F-thiol, the spectra obtained for
TiW and SiO- areas remained unchanged. However, the spectra corresponding to the Au area
displayed clear signatures of C-F (Figure 4.5a). The band at around 1239 cm™ and 1350 cm'*
were attributed to the perpendicular CF. stretching bands vpdCF2 and to the axial CF»
stretching vibration bands vaxCF2, respectively[28], [29]. Similarly, after incubation with F-
phosphonic acid, the spectra of Au and SiO» remained unchanged. The TiW displayer clear IR
signatures of the symmetric and asymmetric CF vibrations (vpdCF2 and vaxCF2) at 1240 cm'?
and 1354 cm™, respectively (Figure 4.5b). A broad peak at from 1080 cm-1 to 1100 cm-1 was
attributed to the P-O bend[30], [31]. After incubation with F-silane, the spectra of SiO; did
not have any obvious C-F signatures (Figure 4.5¢). It maybe resulted from that typical CF>
vibration band is overlapped with Si-O-Si vibrations bands.

Au  TiW | SiOj

F-thiol _

106°+4  10°+1 10°+£1

F-phosphonic acid &

45°+3  105°£5 12°+2

aione | i —e

40°£5 10°+1  102°%S5

Figure 4.6 Contact angles of macropatterned substrates functionalized by F-thiol, F-phosphonic acid,
F-silane. By comparison, contact angles of bare Au, TiW and SiO, were respectively 43°, 12° and 10°.

Water contact angles were measured at each region of patterned substrates as shown in Figure
4.6. The water contact angles of Au, TiW and SiO:z regions on the control patterned substrate
immersed in the pure solvent without molecules (thiol, silane or phosphonic acid) were 43°,
12° and 10°, respectively. After incubation of the patterned substrates in the F-thiol, the water
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contact angle of Au increased to around 106°. The water contact angles of TiW and SiO areas
did not have obvious changes. The 106° angle observed on gold was attributed to the
formation of a perfluoroalkyl hydrophobic layer on Au[29]. After incubation the patterned
substrates with F-phosphonic acid, the water contact angle on TiW increased to around 105°
due to the formation of hydrophobic F-phosphonic acid layer[32]. Meanwhile, the water
contact angles of Au and SiO» areas remained similar to the original values. Incubation the
patterned substrates with F-silane lead to a water contact angle on SiO2 of 102°, 40° on the
TiW areas and Au. However, after immersion in 70°C H>O for 15 minutes, this water contact
angle measured on TiW decreased to nearly 10° due to the hydrolysis of the Si-O-M bond.

4.3.2 Orthogonality of microscale substrates

F-thiol

Figure 4.7 Au*, Ti*, Si*, CF" ToF-SIMS mapping of patterned Au/SiO-/TiW substrates functionalized
by F-thiol (a-d), F-phosphonic acid (e-h), F-silane (i-1), scale bars (100 um).

Functionalization of microscale patterned substrates was implemented and imaged by ToF-
SIMS after incubation with F-thiol (Figure 4.7a-d), F-phosphonic acid (Figure 4.7e-h) or F-
silane (Figure 4.7i-1) [33], [34].
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After incubation with F-thiol, CF* (m/z = 31.00) and Au®™ (m/z = 196.97) originated from the
same areas whereas CF* signals had low intensities for the areas where Ti* (m/z = 47.95) and
Si* (m/z = 27.98) were originating. It suggests that F-thiol was selectively immobilized on
Au. Similarly, ToF-SIMS imaging of the F-phosphonic acid or F-silane functionalized
substrates showed that CF* was localized with Ti* or Si* ions, respectively.

Figure 4.8 Ti" and P* ToF-SIMS mapping of patterned Au/SiO./TiW substrates functionalized with F-
phosphonic acid. The scale bars are 100 um.

Furthermore, on the F-phosphonic acid derivatized substrate, the P* (m/z = 30.97) signal is in
registration with Ti* signal, which also suggested the selective grafting of phosphonic acid on
TiW only (Figure 4.8). The results above demonstrate the good orthogonality of the
functionalization.

4.3.3 Orthogonality outlook of three functionalization reactions

Experimental results show it is possible to specifically locate 1) F-thiol on Au; 2) F-
phosphonic acid on TiW; 3) F-silane on SiO2. When one of these three reactions are
implemented on a substrate bearing the three materials Au, TiW and SiO,, no trace of
adsorption of the used molecule is detected on the other two materials. The next step of this
work will consist in performing these three reactions on a same three-material substrate. We
plan to sequentially test the functionalization of Au/TiW/SiO, substrate with consecutive
reactions, in this order: F-thiol => F-silane (followed by 70°C water washing) => F-
phosphonic acid. F-silane on SiO> has a good stability versus 70° water washing. We expect a
good stability of F-thiol organolayer on gold versus 70° water washing.

4.4 Conclusions

In this chapter, the orthogonal chemical functionalization of building three different
organolayers on a patterned substrate integrated with three inorganic materials was developed
and assessed. We reported functionalization procedures of patterned Au and SiO2 on TiW
substrates with thiols, phosphonic acid and monovalent silane, respectively. Monovalent
silane molecules desorbed from the TiW but remind on SiO. by a simple washing step. The
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direct chemical characterization using XPS, water contact angle and ToF-SIMS mapping
provided evidence of the orthogonality. Our work proposed to be implemented different fields
of nanotechnology, especially in the development of localized surface plasmon resonance
(LSPR) based biosensors.
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Conclusion générale

Ce travail de thése a été centré sur I’étude du TiW, un matériau fortement maitrisé par
I’industrie de la nanoélectronique, mais encore tres peu étudié en termes de fonctionnalisation
de surface.

Nous avons dans un premier temps étudié la formation de différentes couches organiques sur
un substrat de TiW plan et homogéne : nous avons exploré dans quelles conditions il est
possible de fonctionnaliser le TiW avec un cathécol, un silane, et un acide phosphonique.
Nous nous sommes appuyes sur des analyses XRD, AFM, ATR-FTIR, XPS, ToF-SIMS pour
caractériser le matériau et les couches organiques formées a sa surface. Le substrat de TiW a
été systématiquement pré-traité par plasma oxygene, ce qui a simultanément supprimé une
majorité des contaminants organiques de surface, et hydroxylé la surface du TiW. Apres
fonctionnalisation, des lavages progressifs dans de 1’eau a 70°C ont été¢ employ¢€s pour évaluer
la robustesse des couches formées avec les trois types de molécules. Ces premiers travaux ont
montré que les trois types de couches organiques presentent des stabilités différentes : apres
15 min de lavage, environ 95 % de la couche de silane semble supprimée ; environ 70% de la
couche d’acide phosphonique reste conservée et stable sur une heure de lavage ; la couche de
dopamine se dégrade progressivement quand on poursuit les lavages sur une heure, et 50% de
la dopamine fixée avant lavage reste présente apres une heure de lavage.

La faible stabilité du silane utilisé semble attribuable a son caractere de silane
monofonctionnel. Les couches de silane trifonctionnel immobilisées sur TiW sont décrites
comme stables dans la littérature, mais 1’emploi d’un silane 1i¢ a la surface du TiW par une
seule liaison covalente, sans polymérisation latérale, conduit a une couche labile. Les liaisons
Si-O-Ti ou Si-O-W semblent donc peu robustes.

Les couches d’acide phosphonique semblent mieux résister que les couches de silane. Cette
stabilité peut étre attribuée a la robustesse de 1’interaction entre phosphonate et oxyde de
tungsteéne, via la stabilité des liaisons P-O-Ti ou P-O-W.

La dopamine présente une stabilité intermédiaire entre silane et acide phosphonique. Nous
faisons 1’hypothése que la dopamine est fixée sur forme de deux types de complexe avec la
surface : un complexe monodentate et un complexe bidentate. Le complexe bidentate est
considéré comme stable dans la littérature, alors que le complexe monodentate peut étre
progressivement désorbé de la surface par les lavages.

Nous nous sommes appuyes sur ces premiers résultats pour explorer la fonctionnalisation
orthogonale de substrats de TiW recouverts d’autres matériaux. L’acide phosphonique
présentant la meilleure affinité pour le TiW, nous avons mis en ceuvre une fonctionnalisation
de surfaces TiW+or, avec (1) un acide phosphonique d’une part, et (2) un alkythiol d’autre
part. L’objectif ¢tait d’identifier (1) si I’acide phosphonique se fixe spécifiquement sur le TiW,
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et pas sur ’or; et (2) si I’alkythiol se fixe spécifiquement sur ’or, et pas sur TiW. Des
analyses spectroscopiques ont été effectuées d’abord sur des substrats macroscopiques avec
des zones de TiW et d’or dont la taille était de I’ordre du centimétre. Par la suite, nous avons
élaboré sur substrat de TiW des motifs d’or d’une centaine de micrométre de taille
caractéristique. Dans les deux cas, les caractérisations ont pu montrer que dans le cas (1)
I’acide phosphonique est présent sur TiW, et non détectable sur or ; dans le cas (2) I’alkylthiol
est présent sur or, et non détectable sur TiW. De cette maniére, un premier niveau
d’orthogonalit¢ a ¢été démontré. Il a été possible de capturer spécifiquement des
carboxynanoparticules sur des motifs d’or fonctionnalisés par un thiol comportant une
terminaison amine primaire. En milieu pH 7.4, les particules se sont spécifiquement fixées sur
les zones d’or, comportant des amines protonées en surface. Les particules ont été environ dix
fois moins adsorbées sur le TiW. Nous envisageons deux perspectives a ce travail: il s’agirait
a terme de tester I’orthogonalité des réactions quand un mélange de thiol et d’acide
phosphonique est utilisé¢ pour fonctionnalisé le substrat TiW-+or en une étape. Il s’agirait aussi
de tester si la réduction en taille des motifs élaborés a un effet sur I’efficacité de la
fonctionnalisation. Pour démontrer 1’intérét de fonctionnalisation de surface de
nanotransducteurs, il sera nécessaire de tester la fonctionnalisation de motifs fabriqués a

I’échelle nanométrique.

Enfin, nous avons étudié pour la premicre fois s’il est envisageable de mettre en ceuvre trois
réactions orthogonales avec trois molécules différentes, sur une surface composée de trois
matériaux : TiW, or et silice. Dans ce travail, les surfaces TiW+or+silice ont été traitées avec
respectivement (1) un acide phosphonique ; (2) un silane ; (3) un alkykthiol. Nous avons
montré que dans nos conditions d’¢laboration, il est possible (1)

de greffer sélectivement chacune des trois molécules sur un [thiol + silane]

seul des trois matériaux, sans contaminer les autres matériaux :
dans le cas (1) I’acide phosphonique se fixe seulement sur
TiW ; dans le cas (2) le silane se fixe seulement sur la silice,
aprés lavage a ’eau a 70°C ; dans le cas (3) le thiol se fixe
seulement sur I’or. Ces résultats ont ét¢ obtenus a 1’échelle
macroscopique, et a 1’échelle micronique. La suite envisagée
pour ce travail consisterait d’abord a tester comment
fonctionnaliser de maniére séquentielle un méme substrat 9 9
TiW+or+silice avec un alkylthiol, un silane et un acide i N
phosphonique. L’ordre des fonctionnalisations respectives et
des lavages devrait étre choisi en tenant compte des résultats

de la presente these.

Figure C.1 Fonctionnalisation en deux étapes:
mélange thiol+silane puis acide phosphonique.
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Dans un deuxieme temps, il s’agirait de tester s’il est possible de réduire le nombre d’étapes
de fonctionnalisation. Il est problable qu’il est possible d’utiliser un mélange
[alkylthiol+silane] pour mener une premiére réaction orthogonale, suivie d’un lavage a I’eau a
70°C pour désorber le silane de du TiW (Figure C.1). Il sera important de tester si le silane
reste stable sur la silice avec ce lavage. L’acide phosphonique pourrait alors étre déposé dans
un deuxieme temps pour se fixer sur TiW.

Enfin, on pourra explorer comment se [thi_(_'__l + AP + S__ilane]
comporte un mélange des trois molécules ‘) *_" iy
[acide phosphonique + silane + thiol] dans un

méme solvant, pour fonctionnaliser en une
étape une surface TiW+or+silice (Figure C.2).
Comprendre comment acide phosphonique et
silane entrent en compétition pour se fixer sur
la silice serait un des enjeux de ce travail.

5 ¢
+

Figure C.2 Fonctionnalisation en une seule étape avec
un mélange [thiol+silane+acide phosphonique].

Enfin, la suite de ce travail consistera a utiliser ce type de surfaces multimatériaux
fonctionnalisées pour y greffer des biomolécules ou des nano-objets, en vue de réaliser des
dispositifs avec de nouvelles propriétes.
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A Characterization tools

A.1 Contact angle

The contact angle is based on the measure of the angle formed by a liquid drop on a solid
surface in contact with a gas environment. The interfacial tension between the three phases
should satisfy Young's equation:

Ysc = VsL + Yic €OS B¢

Y'sc Is solid-gas interfacial tension, Ys. is solid-liquid interfacial tension, Y'ic is liquid-gas
interfacial tension and 6. is contact angle (Figure A.1).

Figure A.1 Contact angle at liquid-gas-solid interface (source: wikipedia).

Contact angles are generally used for wettability studies. The liquid used in a contact angle
experiment is often ultrapure water which interacts with the surface mostly by hydrogen
binding. In this case, the smaller the contact angle is, the higher the hydrophilicity of the solid
is. More generally, the use of distinct liquids may be useful to probe different interactions
such as ionic or Van der Waals forces. The water wettability of a solid surface is related to the
presence and composition of SAMSs. Thus, contact angle measurements are usually used as the
primary data to prove the success of the functionalization[1]-[3]. A simple setup for contact
angle measurement is composed of a syringe to deposit a droplet of controlled volume onto
surfaces and a camera to capture an image of the droplet and calculate the contact angle.

A.2 Ellipsometry

Ellipsometry is an optical technique for investigating the dielectric properties (complex
refractive index or dielectric function) of thin films (Figure A.2). Ellipsometry does not
directly measure optical constants, it measures the change of polarization upon reflection or
transmission and compares it to a model. It is very sensitive to the change in the optical
response of incident radiation that interacts with the material being investigated. After
computer modeling, it could tell us the thickness of thin films, which can be used as a method
for SAMs characterization. Ellipsometry is rarely used as the sole characterization method of
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a SAM but rather followed by other spectroscopy (XPS, IR) to explore the chemical
composition of the surface in more detail[2]-[4].

1

Light source | Detector
1
1
1
1

Polarizer Analyzer

1
@

Compensator 1 Compensator

(optional) ! (optional)

Sample

Figure A.2 Schematic setup of an Ellipsometry experiment.

A.3 XPS

X-ray photoelectron spectroscopy (XPS) is a sensitive and quantitative technique widely used
to measure the elemental composition, chemical state and electronic state of the elements
within a sample. The sample surface is exposed to photons (Ephoton) in the X-ray range (typical
Al K, X-rays, Epnoton=1486.6 eV). These photons interact with core-level electrons of the
atom presents on the surface up to 10 nm depth. The excited photoelectrons expelled from the
surface with different kinetic energies (Ex) depending on the binding energy (Eb). Eb is
independent on the Ephoton OF the X-rays and only depends on its parent element and atomic
energy level. The Ey of each of the emitted electrons can be determined by using an equation
that is based on the work of Ernest Rutherford:

E, = Ephoton - (Ek + W)

W is the spectrometer work function, Epnoton iS determined by the X-rays source (1486.6 eV of
Al K,) and Ex is the measured kinetic energy. The XPS analyzer counts the number of
photoelectrons at different EK. The XPS analyzer counts the number of electrons (per unit
time) reaching the detector with a given Ex. Thus the data are presented as a graph of relative
intensity (counts/s) versus binding energy of electron, which is referred to as XPS spectrum
(Figure A.3). Obviously, only electrons whose binding energy is inferior to the energy of the
input X-ray photons can be detected. Three kinds of information can be obtained from XPS
spectrum: (1) the nature of the elements within the 10 nm thickness of the surface based on
binding energy of each peak; (2) the relative percentage of each element based on the peak
area of the element; (3) the chemical or electronic state of the element based on the “chemical
shift”. So-called “chemical shift” refers to the fact that electrons at the same quantic state
(same orbital) of the same element have slightly different binding energies depending on the
chemical environment or electric state of the given atom. For example, the binding energy of
C1s orbital of a carbon atom in an alkyl chain C-C-C (C1s peak around 284.6 eV) is different
from that of Cls orbital of a carbon atom in a PEG chain C-C-O (Cls peak around 287.0
eV)[5]. The binding energy of C1s orbital of a carbon atom in an alkyl chain C-C-C (Cls
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peak around 284.6 eV) is different from that of C1s orbital of a carbon atom in a carboxylic
acid chemical group O=C-O (C1s peak around 289.0 eV)[6].

Photo-Emitied Electrons (< 1.5 kV)
escape only from the very top surface
(70 - 110A) of the sample

Electron
Coliection

Si0:/8I°  duiii ey
Sampie

. Electron Energy Analyzer (0-1.5kV)
(measures kinetic energy of electrons)

BN

Electron Detector

Focused Beam of .

Xerays (1.5 kV)

Electron
Take-Off-Angle

Samples are usually solid because XPS Si(2p) XPS signals
requires ultra-high vacuum (<10 torr) from a Silicon Wafer

Figure A.3 Basic components of a XPS system (source: wikipedia).
A.4 AES

Auger electron spectroscopy (AES) is a common analytical technique used in the study of
surfaces, which provides quantitative elemental and chemical state information from surfaces
with the average depth of approximately 5 nm. AES is accomplished by exciting a surface
with a finely focused electron beam (typically 2-10keV). Such electrons have sufficient
energy to ionize all levels of the lighter elements, and higher core levels of the heavier
elements. The Auger process is initiated by creation of a core hole. The ionized atom after the
removal of the core hole electron is in a highly-excited state and will causing another electron
falls from a higher level to fill an initial core hole by one of two routes: (1) emission of X-ray
fluorescence; (2) causing another electron from a higher level emitted from the, which is
called Auger electron. An electron energy analyzer is used to measure the energy of the
emitted Auger electrons. From the kinetic energy and intensity of an Auger peak, the
elemental identity and quantity of a detected element can be determined. In some cases
chemical state information is available from the measured peak position and observed peak
shape[7].

A.5 ToF-SIMS

Time-of-Flight Secondary lon Mass Spectrometry (TOF-SIMS) provides elemental, chemical
state and molecular information from surfaces of solid materials[8], [9]. It is a very sensitive
(typically around 1-2nm depth) surface analysis method that can be used to characterize
SAMs and monitor its formation kinetics. TOF-SIMS is accomplished by exciting a samples
surface with a finely focused primary ion beam (ionized gold clusters or fullerenes), which
causes secondary ions and ion clusters to be emitted from the samples surface. These
secondary ions are then accelerated with a constant voltage onto a time-of-flight mass
spectrometer that separates the different species according to their mass-to-charge ratio (m/z)
which can be determined by computing the “time of flight”. A time-of-flight analyzer is used
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to measure the exact mass of the emitted secondary ions. From the exact mass and intensity of
the peaks, the identity of an element or molecular fragments can be determined. In addition,
by grating a fine-focused ion beam over the surface, like an electron beam in an electron
microprobe, mass resolved secondary ion images (chemical maps) can be obtained
simultaneously.

A.6 IR spectroscopy

Infrared spectroscopy (IR) is used for qualitative identification of the presence of functional
groups in organic and inorganic compounds[10]. It is based on the absorption of infrared
photons by chemical bonds. Molecules are made up of atoms linked by chemical bonds. The
vibration of a diatomic molecule can be approximated by the vibration of a spring with two
spherical masses attached. This characteristic vibrations are called natural frequency of
vibration. If the frequency of the applied IR radiation is identical to the natural frequency of
bond vibration, some of the intensity of the light is absorbed by the bond. The intensity of the
absorption is proportional to the magnitude of the dipole change. Thus, when a surface is on
the optical pathway of the mid-infrared region (ca. 4000cm-400cm), it will absorb part of
the incident light at specific wavenumbers. By plotting the absorption of the sample versus
the wavenumber of the light it can obtains the infrared spectrum of the surface with
characteristic peaks of the different molecular bonds in the sample. The two fundamental
vibrational modes found in mid-IR region are stretching (4000cm™-1500cm™), and bending
vibrations (below 1500cm™). These modes occur in different regions of the infrared spectra
and therefore, relate to different vibrational energies. Stretching vibrations require more
energy and occur at larger wavenumbers, usually toward the functional region. Bending
vibrations occur at lower energy and are found at lower wavenumbers, usually toward the
fingerprint region.

Instead, most IR spectrometers are Fourier-Transform Infrared Spectroscopy (FTIR) based on
Michelson interferometer. In this configuration, the general layout of a spectrometer starts at
its source. The high intensity, broad band source energy is projected into the Michelson
interferometer. The interferometer consists of a beam splitter which reflects half of the energy
to a stationary mirror and half to the moving mirror, creating thus constructive and destructive
interferences on the beam that reaches the sample. The moving mirror scans back and forth
producing a path length difference with respect to the stationary mirror. This path length
difference is sampled in time with respect to the internal laser, allowing for the precise mirror
position from scan to scan. The reflected beams then combine back at the beam splitter and
are reflected into the sample compartment. The sample may absorb some of the modulated
energy from the interferometer. The detector measures the intensity of the modulated energy
to produce an interferogram. This interferogram is later translated into a spectrum by a
Fourier Transformation, hence the name of the technique (Figure A.4). The spectral resolution
is dependent on the amplitude of the moving mirror in the Michelson Interferometer.
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Figure A.4 Schematic diagram of FTIR (source: wikipedia).
A.7 ATR-FTIR

Attenuated total reflection (ATR) is a sampling technique used in conjunction with infrared
spectroscopy which enables samples to be examined directly in the solid or liquid state
without further preparation. IR beam is directed into a crystal of relatively higher refractive
index (mostly >2). Then IR beam reflects from the internal surface of the crystal and creates
an evanescent wave which projects orthogonally in to the sample in intimate contact with the
ATR crystal. The evanescent waves penetrate the sample at each reflection point. Some of the
energy of evanescent wave is absorbed by the sample and reflected radiation is returned to the
detector (Figure A.5). Typical materials for ATR crystals include germanium, zinc selenide,
and diamond. The shape of the crystal depends on the type of spectrometer and nature of the
sample.

ATR generally allows qualitative or quantitative analysis of samples with little or no sample
preparation, which greatly speeds sample analysis. The main benefit of ATR sampling comes
from the very thin sampling path length and depth of penetration of the IR beam into the
sample. This contrasts with FTIR sampling by transmission where the sample must be diluted
with IR transparent salt, pressed into a pellet or pressed to a thin film, prior to analysis to
prevent totally absorbing bands in the infrared spectrum. ATR is also very useful in
determining the SAMs grafted on a surface. For examples, SAMs of phosphonates on metal
oxides could be evidenced[11], [12].

Evanescent wave

Sample

— ,/
Crystal _,. & & & & J

/ Infrared beam (cxil§

Figure A.5 A multiple reflection ATR system (source: wikipedia).
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A.8 PM-IRRAS

Polarization Modulation-Infrared Reflection-Adsorption Spectroscopy (PM-IRRAS) is a
surface sensitive spectroscopy technique for studying thin films or monolayer on metallic
substrate[13]-[15]. The advantage of PM-IRRAS is that it makes the characterization of
single molecule layers and molecule orientation possible. In addition, the interfering effect of
water vapor and CO- can fairly be eliminated.

In fact, there is difference in reflectivity of interfaces for p-polarized (perpendicular to surface)
and s-polarized (planar to surface) light. The phase shift of the s-polarized light is nearly 180°
for all the angles of incidence, the net amplitude of this IR radiation is nearly zero on the
surface so this polarization is not sensitive to the substrate surface. In contrast, the phase shift
of the p-polarized light depends upon the angle of incidence and the net amplitude of the field
usually shows a maximum at grazing incidence angle (Figure A.6). However, the instrument
noise, CO. and water interference make it difficult to extract signals. In a typical PM-IRRAS
setup, the incident beam is polarized by a ZnSe photo elastic modulator (PEM), which
switched the polarization from p to s at a high frequency. It allows the acquisition of two
signals simultaneously: the sum (Rp+ Rs) and difference (|Rp-Rs|) reflectivity. The difference
of two reflectivity provides the surface feature information. The modulated reflectivity is
independent on the isotropic adsorption from gas or bulk water. By taking the ratio of these

two signals: % = (R, — Rs)/(Ry, + Ry) one could obtain a spectrum of the surface without

the contribution of isotropic absorptions from the environment, having a better surface-
sensitivity without the need of acquiring a background spectrum.

Figure A.6 Schematic illustration of the p and s polarization radiation (source: wikipedia).
A.9 Raman

Raman spectroscopy is a spectroscopic technique used to observe vibrational, rotational, and
other low-frequency modes in solid, liquid and gaseous samples. Raman spectroscopy is
commonly used in chemistry to provide vibration modes of chemical bonds by which
molecules can be identified[16]. Raman spectroscopy is a spectroscopic technique based on
inelastic scattering of infrared photons, usually from a laser source. The laser light interacts
with molecules, resulting in the energy of the laser photons being changed and shifted up or
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down, which is called Raman scattering. The shift in energy gives information about the
vibrational modes in the molecules. Surface-enhanced Raman spectroscopy (SERS) is an
important development of advanced Raman spectroscopy that can be very useful in the
characterization of SAMs[17], [18]. SERS enhances Raman scattering by molecules adsorbed
on metal surfaces or by nanostructures such as plasmonic hot spots, which may detect single
molecules.

A.10 AFM

Atomic force microscopy (AFM) is a high-resolution scanning probe microscopy. AFM has
been widely used for surface study. It can work on different kinds of materials, while STM
requires conducting surfaces. Furthermore, it can be performed under normal pressure and
different conditions (vacuum, air or liquid), while SEM need to be operated under high
vacuum. AFM is constructed by a microscopic cantilever with a nanoscale tip (silicon, silicon
oxide or silicon nitride) used to scan sample surfaces. The cantilever is tens to hundreds of
micrometers in size, whose height is controlled by piezoelectric materials and its deflection is
monitored by a laser beam and photodiode (Figure A.7).
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Figure A.7 Atomic force microscopy (source: wikipedia).

The working modes of AFM are contact mode and tapping mode. In contact mode, the tip
contacts the surface and the topography of the surface is obtained from its deflection when it
moves on the sample surface all the time. In tapping mode, the tip does not contact the surface,
but is set to oscillate near its resonant frequency above the surface. The topography of the
surface is obtained from changes in the amplitude of oscillations when the tip moves over the
sample surface. In both cases, instead of measuring directly the deflection or change in
amplitude of the oscillations, AFM is usually set-up to maintain these parameters constant by
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a feedback loop, so that it is the signal necessary to maintain them that, indirectly, gives the
topography of the surface. AFM has been widely used to characterize different SAMs[19]-
[21].

A11STM

With the advent of the scanning tunneling microscope (STM) in the 1980s (Gerd Binnig and
Heinrich Rohrer at IBM Ziirich), it has become feasible to explore in real space the surfaces at
the atomic. A STM is 0.1 nm lateral resolution and 0.01 nm depth resolution. With this
resolution, individual atoms within materials could be routinely imaged and manipulated. The
basic principle of an STM is based on the concept of quantum tunneling. When a voltage bias
is applied and a sharp metal tip is brought close (3-5 A) to the sample surface, an overlap
occurs between the tip and sample wave functions, decaying exponentially into the junction
gap. The bias voltage V: can allow electrons to tunnel through the vacuum between them. The
resulting tunneling current is a function of tip position, applied voltage, and the local density
of states of the sample. Information is obtained by monitoring the current with the tip position
scans across the surface, and is usually displayed in image form (Figure A.8).
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Figure A.8 Scanning tunneling microscope (source: wikipedia).

STM has been widely used to well characterize metal surfaces such as alkanethiol SAMs on
gold, which has special advantage for the early fundamental studies of SAMs formation
showing evidence of different low coverage and high coverage phases and crystalline
arrangements as well as defects[19], [22]-[25].

A.12 TERS

Tip-enhanced Raman spectroscopy (TERS) relies on the enhancement and spatial
confinement of light in the close vicinity of the point of a plasmonic sharp tip, typically
coated with gold. TERS is the combination of Raman Spectroscopy and a suitable scanning
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probe microscopy, such as AFM or STM (Figure A.9)[26]. By raster scanning the tip of
microscopy, it can obtain nanoimages with high spatial resolution. Indeed, a far-field beam is
coupled to a tip to irradiate only a tiny region (ca. 10nm x 10nm) of the sample that delivers
extremely high spatial resolution in nanoimaging. TERS is promising because it combines
unique spatial resolution with spectral signatures for identification of different molecules. J.
Stadler et al. shows TERS can clearly distinguish domains of different thiolate isomers
deposited on a surface through microcontact printing and back-filling[27].
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field

Raman
scattering
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Figure A.9 Tip-enhanced Raman spectroscopy[26].

B Pattern fabrication

B.1 Lithography

The current evolution of nanotechnology stresses the importance of patterned substrates with
different materials. Patterned substrates has many photoelectronic or bioelectronic
applications such as localized surface plasmon resonance biosensors[28] and colloidal nano-
objects trapping[29]. Lithography is the most widespread technique in micro and
nanofabrication to allow the patterned substrates with different micro and nanostructures[30]—
[33]. Lithography is the transfer of geometric shapes on a mask to a smooth surface. In
modern manufacturing, photolithography uses UV radiation to image the mask on a substrate
using photoresist layers. Other methods are electron beam, focused ion beam, and scanning
probe lithography. In the following paragraphs, we will briefly present UV lithography and
the materials and methods used during this work. This work has been possible thanks to
NanoLyon platform at INL.

B.2 UV lithography

UV lithography is perhaps the most commonly used photolithography technique in operation
today. UV lithography is mainly used for large-scale, high-throughput and low-resolution
patterns. The main advantage of photolithography is that many microstructures over a large
area (several cm?) can be exposed simultaneously. However, resolution is limited by
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diffraction, so that photolithography is mainly employed for typical sizes over 1um. As the
name implies, the crux of UV lithography centers around the properties and attributes of UV
light (A = 300nm-400nm). UV light is shined through a mask onto a photoresist covered wafer.
The mask stops some of the light from proceeding onto the resist covered surface. This allows
the motif on the mask to be transferred to the photoresist. An overview of UV lithography is
in Figure B.1.
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‘ 7 Photoresist removal
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Figure B.1 UV lithography process.

1 Resist coating: Photoresist is deposited by spin coating on the substrate. Simply put, the
substrate is spun rapidly inside a vacuum, while being coated with the photoresist. The
photoresist bonds uniformly to the surface, with the excess flying off during spinning.

2 Prebake: The prebake is a simple process of heating the surface in a convection oven or
through a heated plate placed below the surface. The purpose of prebake is to evaporate the
coating solvent and to densify the resist after spin coating.

3 Mask alignment: A photomask is a desired pattern that can be transferred onto a surface by
means of light waves. The mask creates a sort of shadow between the light and the surface.
Less light passes through sections blocked by the mask. The mask must be aligned correctly
in reference to the surface. This procedure is accomplished by hand using certain marks on
the mask and the surface, or by using an automatic pattern recognition device.

4 UV exposure: The photoresist, surface, and mask are subjected to UV light via a UV lamp.

5 Development: During the development stage, chemicals are applied to the surface causing
either a positive photoresist reaction or a negative photoresist reaction.

6 Processing: The openings created in the resist are then used for processing. There are two
primary techniques for patterning additive and subtractive processes. (1) Etch back:
photoresist is applied overtop of the layer to be patterned and unwanted material is etched
away. (2) Lift off: patterned layer is deposited over top of the photoresist and unwanted
material is lifted off when resist is removed.
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7 Photoresist removal: Photoresists are removed from the substrates. Simple solvents are
generally sufficient for polymers whose solubility in a developer (basic solvent). Plasma
etching with O is also effective for removing organic polymer.

B.3 Materials and methods used during this work

This section presents the protocols used for the top-down substrate patterning: Au/TiW and
Au/SiO /TiW. All the processes were conducted at INL Nanolyon platform with the help of
Radoslaw Mazurczyk or Christelle Yeromonahos.

(1) Au/TiW patterned substrate

(a) Photolithography

Spin-coat the AZ 5214 (negative) resist at 5500 rpm for 30 s.
Bake at 110 °C for 60 s.

Expose to UV through mask for 4 s.

Bake at 110 °C for 90s.

Expose whole sample (flood exposure) to UV for 30s.

Develop in TMAH (Metal-lon Free (MIF) 726) for 60 s under constant agitation.
7. Stop development by soaking in ultrapure water.

BRI

(b) Gold deposition
Gold e-beam evaporation was conducted in a Leybold© e-beam evaporator.

1. Introduce sample in evaporation chamber and pump to a pressure of 1.5x10° Torr (27
K).

2. Switch on the cooling system.

3. Deposition of chromium adhesion layer.

(@) Set voltage to 6 kV.

(b) Increase current until the deposition rate, monitored by a QCM, reaches ca. 1A=s (a
cache is “hiding” the substrate so far so that no deposition occurs on it).

(c) Remove cache and wait until the deposited layer reaches 2-3 nm thickness.

(d) Place cache back, decrease current slowly to 0, switch off voltage and wait for the
socket containing the chromium to cool down.

(e) Change socket to the one containing the gold.

4. Deposition of gold layer.

(a) Set voltage to 6 kV.

(b) Increase current until the deposition rate, monitored by a QCM, reaches ca. 2A=s (a
cache is “hiding” the substrate so far so that no deposition occurs on it).

(c) Remove cache and wait until the deposited layer reaches 45-50 nm thickness.

(d) Place cache back, decrease current slowly to 0, switch off voltage and wait for the
socket to cool down.
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(c) Lift off

The deposited substrates were cleaned with acetone until all the remained resist lift off from
substrates.

(2) Au/SiO2/TiIW patterned substrate.
(a) First photolithography
1. Spin-coat the AZ 5214 (negative) resist at 5500 rpm for 30 s.
Bake at 110 °C for 60 s.
Expose to UV through mask (Figure B.2) for 4 s.
Bake at 110 °C for 90 s.
Expose whole sample (flood exposure) to UV for 30 s.

Develop in TMAH (Metal-lon Free (MIF) 726) for 60s under constant agitation.
Stop development by soaking in ultrapure water.

N o gk wn

Jcm ‘

00 um

100 um

7 cm

Figure B.2 Mask for photolithography.
(b) Gold deposition
Gold e-beam evaporation was conducted in a Leybold© e-beam evaporator.

1. Introduce sample in evaporation chamber and pump to a pressure of 1.5 x 10 Torr
(27 K).

2. Switch on the cooling system.

3. Deposition of chromium adhesion layer.

(@) Set voltage to 6 kV.

(b) Increase current until the deposition rate, monitored by a QCM, reaches ca. 1A=s (a
cache is “hiding” the substrate so far so that no deposition occurs on it).

(c) Remove cache and wait until the deposited layer reaches 2-3 nm thickness.

(d) Place cache back, decrease current slowly to 0, switch off voltage and wait for the
socket containing the chromium to cool down.
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(e) Change socket to the one containing the gold.

4. Deposition of gold layer.

(@) Set voltage to 6 kV.

(b) Increase current until the deposition rate, monitored by a QCM, reaches ca. 2A=s (a
cache is “hiding” the substrate so far so that no deposition occurs on it).

(c) Remove cache and wait until the deposited layer reaches 45-50 nm thickness.

(d) Place cache back, decrease current slowly to 0, switch off voltage and wait for the
socket to cool down.

(c) Lift off

The deposited substrates were cleaned with acetone until all the remained resist lift off from
substrates.

(d) Second photolithography

Spin-coat the AZ 5214 (negative) resist at 5500 rpm for 30 s.

Bake at 110 °C for 60 s.

Expose to UV through mask (Rotate 90 degrees) for 4 s.

Bake at 110 °C for 90 s.

Expose whole sample (flood exposure) to UV for 30 s.

Develop in TMAH (Metal-lon Free (MIF) 726) for 60s under constant agitation.
7. Stop development by soaking in ultrapure water.

© g s~ wbh

(e) SiO2 sputtering

SiO2 was deposited by magnetron sputtering (AC450, Ar 42.7 sccm, O2 7.5 sccm, RF power
70W, Vbpiss 140V, 5 x 10 mbar). Two-steps photolithography and materials deposition
process are shown in Figure B.3.

o Mask
g First step Q Si0O, deposition
TiW — —
UV lithography Lift off

Si0,/TiW

Mask \ >
Second step " Au deposition

/
UV lithography Lift off /

Au/SiO,/TiW

Figure B.3 Two-steps photolithography and materials deposition process.
(F) Lift off

The deposited substrates were cleaned with acetone until all the remained resist lift off from
substrates.
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Abstract: The development of nanotechnologies makes it possible to manufacture the micro or
nanometric-sized patterns with various materials (dielectrics, metals, semiconductors). These
heterogeneous surfaces are commonly used in the electronics industry for the production of
nanoelectronic structures and components: transistors, memories or sensors. The concept of
orthogonal chemical functionalization was first proposed by George M. Whitesides to modify
the surfaces composed of different materials at the macroscopic scale. In this context, this PhD
work aimed at exploring the orthogonal chemical functionalization approach on a predefined
patterned titanium tungsten (TiW) surface by lithography producing. Pattern materials (Au,
SiO) are chosen to have different chemical properties, which can be functionalized with
completely independent reactions. To achieve this aim, we have studied three different chemical
groups for the formation of organolayers (silane, catechol, phosphonic acid) on TiW for the
first time. The three layers were characterized (XPS, IR, ToF-SIMS) and the stability of the
formed organolayers was also addressed. Then we developed and ascertained the orthogonal
chemical functionalization of patterned Au/TiW and Au/SiO2/TiW surfaces. It proposes a novel
strategy for the orthogonal functionalization on a triple-material patterned surface. In addition,
the capture of nanoparticles by electrostatic interaction at specific location on Au/TiW patterned
substrate was successfully implemented to prove the interest of such method for colloids

trapping.
Keywords: TiW; Au/TiW; Au/SiO2/TiW; orthogonal chemical functionalization.

Résumé: Avec le développement de nouveaux dispositifs apparait le besoin d’étre capable de
contréler la chimique de surfaces de substrats multi-échelle et multi-matériaux. Plusieurs
techniques font appel a de la chimie localisée via différentes technologies. Une approche
consiste a exploiter les différences de réactivités chimiques entre les différents matériaux du
substrat et différents groupements chimiques de maniere a fonctionnaliser sélectivement chaque
matériaux pour former des couches minces organiques de type « Self Assembled Monolayer »:
Ce principe proposée par Pr. G. M. Whitesides est appelé chimie orthogonale. Dans le cadre de
cette these, le but ultime était de réaliser la fonctionnalisation chimique orthogonale de substrats
dont la surface était composée de SiO2/Au/TiW La premiére étape de ce travail a été de
déterminer pour la premiére fois la fonction chimique la plus adaptée pour la fonctionnalisation
de TiW. Pour se faire nous avons compareé la chimie des silanes, des acides phosphoniques et
des catéchols. Apres caractérisations (XPS, ToF-SIMS, IR) des différentes couches, la voie des
acides phosphoniques semblait étre celle donnant lieu a la couche la plus stable. Ensuite nous
avons étudié 1’orthogonalite sur de substrats bi-matériaux (SiO2/TiW ou Au/TiW), et enfin sur
substrat dont la surface était constituée de Au/SiO2/TiW.

Mots clés: fonctionnalisation chimique orthogonale; chimie des interfaces.



