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Introduction

Nowadays one of the main issues that the nations of the planet are facing is the
development of cheap and sustainable technologies for energy harvesting, so as to supply
their constantly increasing need for energy while minimizing the negative impact on the
environment. This research is an issue of enormous importance not only from the scientific
and technological points of view, but also from the geopolitical, military and economic
profiles. It is thus clear the importance that renewable energy sources have recently
acquired in the global scenario.

In this context, photovoltaics (PV) undoubtedly appears as one of the preferential
solutions, being a more available and more versatile approach than others (e.g. wind farming
or geothermal or hydroelectric energy), due to the fact that it can be employed not only in
massive production plants, but also on domestic (or even device) scale. Ultimately,
photovoltaics has all the potential to represent an effective and elegant answer to a complex
issue.

For this reason, many efforts have been spent in the last decades both to reduce the cost
of the devices and to improve their performances. Most of the PV technology for
commercial uses is currently based on crystalline Si (c-Si), a low-cost material whose
properties have been very well investigated and mastered for decades. As a matter of fact,
fabrication costs of c-Si PV modules drop from 4 S in 2008 to less than 0.3 $ now per Watt-
peak,! corresponding to an energy cost below 0.2 €/kWh and a grid parity within a large part
of Europe. However, this drastic improvement in competitiveness is coming to a limit and
some new directions should be investigated.

Regarding the reduction of the material cost, much attention has been paid to the use of
alternative materials to replace Si, which currently dominates the market thanks to its large
availability and cheapness but whose intrinsic properties prevents significant increases in cell
efficiency. Among the alternative materials, we can mention for example CIGS (copper
indium gallium selenide) alloys, organic materials and perovskites. Nevertheless, all of them
have shown intrinsic limitations which prevent them to replace silicon in commercial
applications. As far as CIGS materials are concerned, although relatively affordable, they do
not present efficiencies as high as those ones of traditional Si cells. Organic materials are
particularly interesting for the possibility of achieving flexible devices, but their
photoconversion efficiencies and life times are not comparable to those ones of Si cells.
Perovskites have been arousing great interest in the PV sector, thanks to high efficiency
performances. However, the short life time of these materials due to their organic nature
and their highly eco-unfriendly Pb-based composition still restrict their use to the
development of prototypes only.



In this context, a further cost reduction for devices based on Si requires to overcome its
maximum theoretical efficiency limit (29.1 %),%>® which is due to different physical loss
mechanisms. The best approach to increase the PV cell efficiency would consist in the
development of multi-junction (MJ) solar cells, whose fundamental principle is to connect in
series several sub-cells made of different materials with different band-gaps. Multi-junction
structures, usually fabricated using a combination of IlI-V alloys as upper cells and Ge
substrate as bottom cell, present the advantage of reducing the losses caused by
thermalization. Notwithstanding, the costliness of Ge substrates or wafer bonding
techniques still restrict their use to a narrow field of applications, e.g. in photovoltaics under
concentrated light or in the aerospace industry.

A simple way to reduce the cost is to develop bottom cells based on Si substrates, which
also offers the advantages of a well-established manufacture. In the case of a tandem cell
with Si as bottom cell and top cell having a band-gap of 1.7 eV, efficiencies up to 41.9% can
be theoretically achieved.* In the last years, many efforts have been devoted to obtaining
this kind of structure, and several materials have been employed to realise the top cell, e.g.
perovskites>® and IlI-V alloys,” although these generally require very complex architectures.

Therefore, a monolithic approach based on heteroepitaxy may appear as the most
convenient to integrate IlI-V top cells on Si substrates. However, it must be considered that
the high lattice mismatch between the two materials would cause the presence of misfit and
threading dislocations acting as recombination centers for carriers, thus decreasing the
performances of the cells.

A possible solution to this issue could come from the use of nanowires (NWs) in the
photovoltaic domain: already employed with promising results in the development of single-
junction cells, thanks to their peculiar structural and optoelectronic properties, they may
also constitute an alternative approach to overcome the drawbacks of the IlI-V/Si integration
and potentially lead to the achievement of cheap yet highly efficient tandem solar cells.

Based on these considerations, we developed the French ANR funded project HETONAN
(http://inl.cnrs.fr/projects/hetonan/) to achieve a prototype of tandem solar cell based on
ordered arrays of Alp2Gao.sAs NWs (top cell) monolithically integrated on Si (bottom cell) via
molecular beam epitaxy.

The results of the last three years of experimental work in this regard are reported in this
thesis as follows:

Chapter 1: The background and state of the art of IlI-V photovoltaics and of its integration on
Si are briefly presented, with particular attention to the chronological evolution
of the issue. After that, we expose thoroughly the evolution and state of the art
of the NWs-based single junction cells, before introducing the most important
theoretical studies developing the concept of NWs-based tandem solar cells on
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Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Si. This is followed by the presentation of the only tandem solar cell prototype so
far achieved, and finally by the definition of our targeted cell.

The second chapter concerns the solid-source molecular beam epitaxy (ss-MBE).
After introducing the salient concepts of its principles, we describe our
experimental setup and the Reflection High Energy Electron Diffraction (RHEED)
technique we have used to calibrate the V and Il element fluxes and to follow
the growth of NWs in situ.

The experimental results achieved during this thesis are started to be reported in
this chapter. After introducing the general principles of the vapour-liquid-solid
(VLS) assisted MBE growth of IlI-V NWs and the main theoretical models so far
developed, we present our experimental results concerning the self-assisted
growth of GaAs NWs on epi-ready Si(111) (as a preliminary step for the further
development of core/shell structures). Firstly, we expose the influence of the
growth temperature and the role of the Ga pre-deposition on the NW growth.
Then, we conducted a very thorough study on the impact of the incidence angle of
the Ga flux on the self-assisted GaAs NW growth, with particular attention to the
NW length and diameter. In order to better explain these experimental results,
we report on a semi-empiric growth model and numerical simulations
(performed in our group by A. Danescu) to better explain the influence of the
incident angle of the Ga flux on the self-assisted growth kinetic of GaAs NWs.

Our work continues with the presentation of the results achieved in the growth
of core/shell Alp,GapsAs-based NWs on epi-ready Si substrates, a preliminary
step before switching to patterned substrates. The first part is dedicate to
present our attempts to achieve the axial growth of Alp2GaosAs NWs on epi-
ready Si substrates (the originally targeted structures), and to explain the reasons
of our failures. Subsequently, we treat the growth of core/shell NWs and we
expose the results concerning the growth and structural characterization of p-n
GaAs core/shell NWs and of p-GaAs/p.i.n-Alp2Gao.sAs core/shell NWs. A second
part is dedicated : 1- to the characterization of the optoelectronic properties of
these core/shell NWs and of the study of the “passivation” shell by
photoluminescence (PL), and 2- to the study of the p-n and p-i-n junctions by
Electron Beam Induced Current (EBIC) (performed by the partner group of M.
Tchernycheva at C2N).

This chapter deals with the growth of self-assisted core/shell NWs on patterned
substrates. Firstly, we present the results of the numerical simulations performed
by the partner group of A. Kaminski-Cachopo at IMEP-LAHC to define the optimal
parameters of the top cell. Then, we present the results concerning the selective
pre-deposition of Ga to form ordered arrays of Ga droplets as a necessary
condition to grow ordered arrays of self-assisted NWs with GaAs core.
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Subsequently, we present the growths of NWs performed on patterned
substrates (provided by A. Cattoni from C2N) with a focus on our protocol, which
allows achieving remarkably high vertical yields of both GaAs NWs and p-core
GaAs/ p.i.n-Alp.2GapsAs shell NWs thanks to a soft thermal pre-treatment of the
patterned substrate before the NW growth. Then we present a TEM
characterization of these NWs and an EBIC study of the p-i-n junctions. Finally,
we show the first results obtained on substrates patterned at INL and, based on
these results, we advance a hypothesis to explain the role of the thermal pre-
treatment in determining high vertical yields.

Chapter 6: This last chapter shows the preliminary results obtained in the fabrication process
undertaken to achieve the targeted tandem solar cell. We firstly expose some
preliminary results concerning the fabrication of the Si bottom cell and the
general process to develop the architecture of the targeted tandem solar cell.
Then, we show the results concerning the encapsulation of NWs, which is
eventually performed with polymer resine BCB after experiencing failures with
inorganic compound HSQ. Finally, we conclude by presenting the results achieved
in the NW top contacting with ITO by magnetron sputtering.

We reported also two annexes: a brief summary of the characterization techniques
employed (Annex 1) and an additional document by A. Danescu to provide more insights
about the simulation work (Annex 2).
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1 State of the art of photovoltaics and the potential of
nanowires in the new generation of solar cells

1.1 State of the art of photovoltaics

Among all the possible options in the field of “green energies”, photovoltaics (PV) is for
sure the one which draws most of the attention, thanks to the possibility to exploit a stable
and de facto unlimited source. The main consequence of this interest has been a continuous
guest to increase the competitiveness of the PV cells on the energy market, which lead to
good results in terms of costs. As a matter of fact, fabrication costs of PV modules drop from
4 S in 2008 to less than 0.3 $ now per Watt-peak®. As these costs appear to reach a limit for
Si modules, it follows that the only way to increase the competitiveness of the PV technology
is to enhance its efficiency, so as to increase the power delivered per m2.

1.2 Si-based photovoltaics

Most of the PV technology for commercial uses is currently based on crystalline Si, a low-
cost material whose properties have been very well investigated and mastered for decades.
Nevertheless, the efficiency of high-quality commercial modules is still slightly less than 20
%. In order to achieve higher performances, many efforts in the latest years have been
devoted to the development of prototypes,® and promising results have been reached in this
field. For example, in 2014, Masuke et al obtained a cell efficiency n equal to 25.6 %,° a
result approached one year later by Adachi et al with a device providing n = 25.1 %.1° Smith
et al reached n = 25.2 % in 2016, although the current efficiency record of 26.6 % is held by
Yoshikawa et al (at Kaneka corporation) since 2017.12 However, in spite of these remarkable
performances, the further development of this technology is intrinsically affected by the
maximum theoretical efficiency limit reachable by a Si-based cell, better known as Shockley-
Queisser limit and corresponding to n = 29.1 %.%3

As a consequence, researchers have been focusing on materials other than Si to push the
efficiency beyond the Shockley-Queisser limit.

1.2.1 Multi-junction solar cells

The best approach to increase the efficiency would consist in the development of multi-
junction (MJ) solar cells, whose fundamental principle is to connect in series several sub-cells
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made of different materials with different band-gaps. This allows collecting photons from a
broader range of wavelengths of the solar spectrum, with remarkable enhancement of the
performances (Figure 1.1). The theoretical maximum efficiency of a MJ cell composed by an
infinite number of sub-units would be indeed around 87 %,* and experimental results
obtained so far are also very promising, the current efficiency records in the field of MJ cells
(and generally speaking of all PV) being held by 3- and 4-junction cells (n = 44.4 and 46 %,

respectively) under concentrated sunlight (508 suns).®

a) b) ... c)
==
GaAs
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| 1 g 1400
InGaP BASE InGef - B 001K CHLL wGahs 1.4 o
AIGalnP 2 186V E 1200 B 50N CELL Go 0 4cey
TUNNEL JUNCTION : 000
Celll InGaP WINDOW -
TTER| MIDDLE CELL L
Cell2 Nunnel oAy EMITIER) InGaAs #
_/Junction p | InGaAs BASE | 14 eV .
p* | InGaP BS¥ $
Cell 3 g
4 | InGaas BUFFER &
InGaP HETERO LAYER BOTTOM CELL
n |Ce BASH 065eV 500 1000 1500 2000 2500
p | Ge BSF

Wavelength (rm)

Figure 1.1. (a) Schematics of the main concept of a MJ cell. (b) Schematics of the structure of a 3-
junction cell. (c) Graph of spectral irradiance as a function of the wavelength over a 1 sun AM 1.5G
solar spectrum. The maximum electricity conversion efficiency for each junction as a function of the
wavelength is also reported.®®

Nevertheless, the production of MJ cells presents some problematic aspects. Indeed, the
different sub-cells must be connected in series by tunnel junctions which are quite difficult
to design and produce, because the electrical characteristics of each individual junction must
be matched, and the values of photo-generated currents should be as close as possible in
each junction. Since the optimal materials for this purpose are the IlI-V semiconductors,
much more expensive and difficult to process than Si, the drawbacks of MJ-based systems
are a high complexity and high material and manufacture costs. As a consequence, MJ cells
are currently unsuitable for mass production and limitedly utilized to specific applications
such as aerospace and concentrated photovoltaics (CPV) plants, whereas they are not
adopted for commercial uses and to replace the Si-based cell technology. Thus, a different
approach to increase efficiency in the PV market is still needed.

1.2.2 III-V semiconductor/Si planar tandem solar cells

A feasible solution to the cost issues related to MJ cells has come from the possibility of
developing IlI-V semiconductor/Si planar tandem solar cells (TSC). These can be defined as
hybrid systems consisting of only two different sub-units connected in series by a tunnel
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junction: a bottom cell made of Si and a top cell made of IlI-V materials, as schematized in
Figure 1.2.
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Figure 1.2. Schematics of a TSC.*

The purpose of such a configuration is still to exploit the solar radiation more efficiently,
yet employing a cheap substrate. Although a double junction implies less efficiency than in a
MJ system, the low cost of Si substrates, their well-established manufacturing and the lower
complexity of the device can make TSC more advantageous than MJ cells for commercial
uses. Theoretical calculations showed indeed that TSCs can largely exceed the Shockley-
Queisser limit of Si cells, their maximal efficiency having been estimated around 42 % for
planar devices under 1 sun illumination.* The choice of IlI-V semiconductors as constituents
of the top cell is not accidental, but due to the fact that the optimal band-gap for this sub-
unit is 1.7 eV,*> and Ill-V ternary or quaternary alloys (like GaAsP, AlGaAs, InGaN, GaAsPN
and others) can provide for this function, since their composition can be tuned to achieve
this value.

Based on these considerations, a monolithic approach based on heteroepitaxy may
appear as the most convenient to integrate IlI-V top cells on Si substrates. However, it must
be considered that the high lattice mismatch between the two materials would cause the
presence of misfit and threading dislocations acting as recombination centers for carriers,
eventually decreasing the performances of the cells. Moreover, since the growth of polar Ill-
V materials on non-polar Si would originate other structural defects such as anti-phase
domains, the direct epitaxy process turn out as extremely challenging and has not been
resolved until now.
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The solution to this problem may consist in the introduction between the two sub-units of
a buffer layer, which is expected to be optically transparent and thin enough to actually
exploit the Si substrate as bottom cell, and also conductive enough to reduce the series
resistance.'® In 2005 Geisz et al achieved a conversion efficiency of 5.2 % with open circuit
voltage (Voc) equal to 1.53 V under 1 sun AM 1.5G on a GaNxP1x.yAsy/Si TSC, in which the
adoption of a buffer layer of diluted nitrides (GaNo.02Po.9s) made most of the IlI-V layers
nearly lattice-matched to the Si substrate.!” A similar result was obtained three years later
by Ager et al thanks to an InGaN/Si TSC with an AIN buffer layer,® a configuration adopted
also by Train et al, who achieved Voc = 1.52 and n = 7.1 % in 2012.%° However, the current
efficiency record for a monolithically integrated I11-V/Si planar system was achieved in 2007
by Geisz et al, with a GaAso.7Po.3/Si TSC providing n = 9.8 % under 1 sun AM 1.5 G thanks to a
buffer layer whose composition changes progressively from GaAso.07Po.93 to GaAso.63P0.37.2°

Despite the introduction of buffer layers, experimental results are evidently inferior to
theoretical expectations. Although efficiencies above 16 % were obtained by other
groups,?222 it should be noticed that in these cases both top and bottom cells were made of
-V materials, Si being used just as substrate for the growth and not as PV-active
component. Moreover, the performances achieved by this type of devices were still lower
than those ones of Si-based commercial modules and this fact lead to reconsider the
monolithic approach in favour of other methods.

In such a context, post-growth wafer bonding turned out to be the most promising
technique. This approach generally consists in growing the IlI-V top cell on GaAs (or other IlI-
V substrates), so as to prevent dislocations caused by lattice mismatch. Subsequently, the
top cell is removed by epitaxial lift-off (usually by wet etching) and fusion bonded on the Si
bottom cell. The whole procedure can be carried out at relatively low temperature, so as to
minimize the number of defects at the interface and prevent cracks due to the different
thermal expansion of Si and 11I-V materials,?® and as a matter of fact it has led to much more
performing devices than those obtained by monolithic approach. In the above-quoted
article, Dimroth et al compared the results obtained for two GalnP/GaAs TSCs on Si
substrates prepared by wafer bonding and by epitaxial growth (Figure 1.3): it was thus
observed that, although the cells had formally the same structure, conversion efficiencies
were as high as 26 and 16.4 %, respectively.??
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Figure 1.3: Schematics of the two GalnP/GaAs TSCs realized by Dimroth et al on Si substrates.?
Although the structure is formally the same, the cell prepared by wafer bonding showed much higher
efficiency (26 %) than the monolithic one (16.4 %), realised with a metamorphic buffer layer.?

Thanks to wafer bonding, significant improvements were observed also for TSCs with Si
bottom cells. In 2003, Taguchi et al almost equalled the efficiency of commercial modules
with a GaAs/Si TSC providing n = 19.4 %,>* whereas in 2012, Tanabe et al surpassed Si-based
commercial modules realising an AlGaAs/Si TSC exceeding 25 % efficiency.”> However, the
most important result so far achieved in this field was realized in 2017, as Essig et al
developed two 4-terminal GalnP/Si and GaAs/Si TSCs (Figure 1.4), with efficiency equal to
32.4 and 32.8 %, respectively.” Such an outcome is particularly significant not only because it
sets a new high efficiency record, but also because it is the first example of IlI-V/Si TSCs
actually capable to overcome the Shockley-Queisser limit of Si.

a  GalnPF4Sitandem solar cell b Gahs/Sitandem solar cell
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Figure 1.4. Schematics of (a) GalnP/Si and (b) GaAs/Si TSCs realised by Essig et al in 2017.”7 These
devices, with n=32.4 and 32.8 %, respectively, provided the current efficiency record for I1I-V/Si TSCs
and are the first example of such a cell overcoming the Shockley-Queisser limit of Si.

17



Despite this very remarkable result, the cost of such a device would still be too high if
compared to conventional Si cells. As a matter of fact, this is estimated as one order of
magnitude higher than for commercially available Si cells, the disparity being caused by the
high cost of GaAs wafers and of the epitaxy of IlI-V solar cell stacks. Moreover, its integration
in mass production appears difficult because of the 4 terminals, whereas devices adapted for
commercial uses generally consist of 2-terminals technology. As a consequence, these
problems set once again the question which triggered the quest for innovation, i.e. how to
combine higher performances with low costs?

The solution, as shown in the next paragraphs, might come from dismissing the concept
of planar TSC to embrace the opportunities offered by unidimensional structures.

1.3 The role of nanowires in photovoltaics

Thanks to their high aspect ratio, nanowires (NWs) are de facto unidimensional
nanostructures whose electronic, optoelectronic, mechanical and thermal properties are
much different from those of their corresponding two-dimensional (2D) and bulk materials,
and because of this peculiarity they have been object of studies in many fields. The interest
aroused by those nanostructures involves also energy harvesting, due their potential use in
photovoltaics and water splitting.

As far as photovoltaics is concerned, in the last two decades a lot of attention has been
paid to research on NWs,?6730 since solar cells based on these nanostructures have indeed
some potential benefits over planar devices. These advantages consist mainly in superior
electronic and optoelectronic properties, capacity of strain relaxation, effective charge
separation and cheapness. Therefore, although NW-based solar cells are not meant to
exceed the thermodynamic efficiency limits of corresponding planar devices, they still do
represent a chance to closely approach those limits.

As a consequence, many prototypes of NW-based PV devices have been realized with a
large variety of materials, such as Si,3! Ge,3? metal oxides,33¢ 1I-VI semiconductors3’-3°,
nitrides*® and also combination of NWs and polymers*~*3, without forgetting to mention all

the solar cells based on IlI-V NWs that will be discussed in paragraph 1.3.2.

1.3.1 The benefits of unidimensional nanostructures

If we look into the microscopic nature of photovoltaics, we can see that the conversion of
sunlight into electricity is a process consisting of many consecutive steps such as photon
absorption, carrier generation, carrier separation and finally carrier collection. Therefore,
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minimizing all possible causes of losses in every step is the keystone to optimize
performances. As already mentioned in the previous paragraphs, one of the main drawbacks
in thin-film technology is the high density of structural defects at the interface between Si
and IlI-V materials which act as recombination centres for the free carriers. This issue can be
overcome thanks to NWs. As a matter of fact, semiconductor NWs show a very high degree
of crystallinity even when grown on highly mismatched substrates, since these free-standing
nanostructures are capable to release the stress induced by the lattice mismatch through
elastic relaxation on their surface,*** as shown in Figure 1.5, and also to prevent the
formation of anti-phase domains. Small foot print and strain accommodation are also
extremely eligible characteristics during the integration process, since they can prevent the
risk of cracks which may occur as a consequence of the different thermal expansion
coefficients.!®

n-v

Silicon

Figure 1.5. Schematic of a free-standing Ill-V semiconductor NW on Si substrate; the strain induced
by lattice mismatch is released through elastic relaxation at the NW surface, and the formation of
anti-phase boundaries is prevented.

The contribution of NWs in the improvement of PV performances is not limited to the
prevention of structural defects, but it involves the rest of the steps of the photogeneration
process. As a matter of fact, another very important characteristic of NWs is the possibility
to strongly reduce the so-called absorption losses: these can be divided into losses caused by
reflection, in which not all photons enter the semiconductor being reflected from the
surface, and transmission losses, in which part of the photons passes through the active
region without causing carrier separation.

Reflection losses can constitute an extremely serious issue for PV considering that most of
the semiconductors would reflect from 10 to 50 % of the sunlight,*® and since reflection

19



originates from a difference in refractive index between two media%’, the most common
solution to this problem is to provide a cell with coatings whose refractive indexes are
intermediate between that one of the semiconductor and that one of the air.*® Although this
approach is widely used in the fabrication of planar cells, it is still not that efficient since
every layer can completely prevent reflection only for a single wavelength at normal
incidence, thus being less effective for the rest of the spectrum. However, if we consider that
an ideal coating should have a continuously graded refractive index to be totally anti-
reflective, NWs appear indeed close to this ideal case thanks to the fact that they actually
show a gradual change in it. As a matter of fact, experiments carried out on different types
of semiconductors (e.g. c-Si, GaN, GaAs, InP, GaP, Ge, CdS) eventually proved that NWs are
actually capable to reduce drastically the reflection of light.384%->>

In the case of transmission losses, the main advantage of NWs is the possibility for these
nanostructures to act as a resonant light trap:°®>8 while random arrays of semiconductor
NWSs can act as strong scattering and resonance centres,®® ordered arrays of structures
benefit also from diffraction effects, collective resonance and changes in the optical density
of states,® thus further reducing absorption losses and their detrimental effects.

Although absorption issues are potentially very detrimental for the PV process, they still
do not constitute the biggest threat for the cell efficiency, as the main cause of losses in the
photocurrent generation process is normally related to the second step, i.e. the carrier
formation, in which carrier-phonon coupling can waste from 30 to 40 % of the incident
sunlight.! As far as planar cells are concerned, the solution to this problem could consist in
employing materials with optimal band-gap, which can be obtained by tuning the
composition of semiconductor alloys. However, this possibility is strongly limited in the case
of planar films by the fact that many 2D alloys can be subject to miscibility gaps and strain-
induced defects. On the contrary, NWs can overcome the miscibility gap induced by strain,
thanks to the possible strain relaxation, thus offering the chance to achieve completely
tuneable compositions at will.52

Finally, further benefits can occur during the last phase of the PV process, i.e. the carrier
collection by the electrodes, when the NW geometry can provide rapid radial large
separation and efficient carrier collection through band conduction.®3

Apart from potentially enhancing the PV efficiency by increasing the material quality and
performances, all the above-mentioned properties can contribute also in lowering the cost
of solar cells. The reason for cost reductions lies mainly in the reduced amount of material
needed to fabricate a device due to the shorter NW growth times compared to those of
equivalent 2D layers, the better absorption properties of NWs, as well as in the wider choice
of eligible semiconductors offered by the possibility of easily tuning the band-gap.®°
However, the most attractive aspect of this kind of nanostructures is perhaps the possibility
of achieving defect-free monolithic integration via bottom up synthesis on substrates as chip
as Si, a characteristic which can significantly reduce the overall cost of a PV cell. Based on

20



these considerations, a strong impetus was given to the development of prototypes of NW-
based PV cells: the main achievements in this field will be summarized in the next paragraph.

1.3.2 State of the art of single junction NW solar cells

Generally speaking, NWs can be classified according to the type of p-n (or p-i-n) junction,
which constitutes the PV active region of these nanostructures, and can be distinguished
into axial or radial, depending on whether it is located respectively along the NW length or
diameter, as shown in Figure 1.6.

Figure 1.6. Schematics® of NWs with axial (a) and radial (b) p-i-n junction (right inset from Tegude et
al® to exemplify a cleaved core/shell structure in top view).

NWs with radial junctions are commonly reputed as the most performing ones for PV
applications, because apart from all the benefits offered by 1-D nanostructures they can also
take advantage of a high charger collection efficiency due to the fact that the charge
separation occurs along the shortest dimension of the NWs, thus making the carrier
collection distance comparable to the minority carrier diffusion length.®®> Moreover, radial
junctions are also more tolerant of the presence of defects®® and surface states®® than the
axial ones, providing also a bigger PV active region at the same NW diameter.

On the other hand, although NWs with axial junctions do not benefit from these factors,
they offer some advantages which make them still attractive as building blocks for solar cells,
since according to a study conducted at Povinelli’s group® they can provide higher open
circuit voltage (Voc) and more flexibility in designing the structure of the junction than radial
ones. Moreover, theoretical comparisons showed that radial junctions are expected to be
more tolerant to doping variation and capable to provide quite stable performances in terms
of current density (Jsc), Voc and n even on doping ranges as big as two orders of magnitude
(10%6-10%8 cm3), not omitting that thanks to the possibility of employing lower doping levels
(< 107 cm3) they lower the risk of reduced carrier mobility and diffusion, thus providing
margin for optimization and robust design.5
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These opposite considerations, together with the fact that the choice of the type of
structure may be influenced by the versatility of the material and the fabrication technique
adopted, have caused a flowering of theoretical and experimental studies aimed at the
realization of NW-based solar cells based either on radial or axial single junctions.?961,62,64-91
As a consequence, the history of the research in this field records numerous important
results, of which the most prominent ones are summarized below.

In 2007, Lieber’s group at Harvard University succeeded in the purpose to obtain solar
cells based on individual Si NWs with a p-i-n radial junction. Those nanostructures proved to
be capable to achieve individually energy conversion efficiencies up to 3.4 % and maximal
power outputs of 200 pW under 1 sun AM 1.5G illumination.%” Moreover, the authors
investigated in detail the role of the intrinsic layer in the junctions by comparing the (V)
curves of p-n and p-i-n structures: the results are extremely important since they show that
p-i-n junctions have a better ideality factor in forward bias and a much larger breakdown
voltage in reverse, which suggests the presence of lower tunnelling or leakage currents than
in their p-n counterparts. These characteristics (later found also in GaAs NWs’’) make p-i-n
NWs much more performing as diodes and thus more suitable for the fabrication of solar
cells.

Although very interesting under the aspect of the fundamental properties of NWs and
constituting a milestone in the history of this topic, this study was nevertheless very far from
the concept of solar cells based on a NW array. This was put into practice for the first time
one year later thanks to the pioneering work of LaPierre’s group, which fabricated a solar
cell based on a disordered array of GaAs NWs with a radial p-n junction grown by molecular
beam epitaxy (MBE) on GaAs(111) substrate via Au-assisted vapour-liquid-solid (VLS)
growth:’? the choice of such material was widely motivated by the fact that thanks to his
band-gap of 1.42 eV, it has the best-matching absorption with solar spectrum among
semiconductors.?* Despite the poor cell performance in terms of efficiency (0.83 % under 2.6
suns illumination) caused by the lack of optimization due to the originality of the structure,
this study constituted a very impressive results since it demonstrated the feasibility of a
novel approach, thus becoming indeed the first in a long series of works.

In 2009, Goto et al extended the range of semiconductors with a 7.0 x 2.6 mm? solar cell
based on InP NWs grown on the same substrate by Metal Organic Vapour Phase Epitaxy
(MOVPE) and including a radial p-n junction (Figure 1.7).”2 Some of the interesting points of
this research (which eventually broke the 1 % efficiency barrier reaching n = 3.37 % under 1
sun AM 1.5G illumination) consist in the use of selective area growth so as to obtain ordered
arrays of NWs, which are expected to have better light trapping properties than the
unordered ones,®® and of a transparent resin for encapsulating the NWs so as to protect
them from mechanical stresses. Another remarkable result was achieved in the same year by
Fontcuberta’s group at EPFL with a solar cell based on individual GaAs NWs with a radial p-i-
n junction showing efficiency equal to 4.5 %,°> thus exceeding Lieber’s previous record.
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Figure 1.7. (a) Schematics of the solar cell developed by Goto et al. and (b) cross-sectional SEM image
of the device in question.”?

Afterwards, Garnett and Yang applied the concept of ordered arrays to Si NWs and in
order to exploit the enhanced light trapping properties offered by relatively long
nanostructures they developed a solar cell based on 8 um long NWs on an area equal to 16
cm? which reached efficiency above 5 %.3! Apart from the remarkable efficiency which
constituted a new record at that time, the element of novelty in that work is the use for the
first time of a top-down approach, the NWs having been obtained by deep reactive ion
etching (RIE) of a n-doped Si wafer, and subsequently doped by boron diffusion so as to form
radial p-n junctions.

In 2011, Mariani et al at Huffaker’s group succeeded in fabricating the first example of PV
devices based on an 0.25 mm? ordered array of catalyst-free GaAs nanopillars with a radial
p-n junction grown on a GaAs substrate by Selective-Area Metal Organic Chemical Vapour
Deposition (SA-MOCVD).”® Although the efficiency of 2.54 % under 1 sun AM 1.5G
illumination is lower than those ones previously achieved by other groups mentioned above,
this work is nevertheless noteworthy because by tripling the result of LaPierre’s first cell, it
shows the importance not only of ordered arrays but also of Au-free nanostructures: as a
matter of fact, the diffusion of Au into the NWs originates mid-gap trap states which
degrade the minority carrier lifetime and diffusion length not only in Si®>®® but also in
GaAs,’=°, thus diminishing the process efficiency.

The research at Huffaker’s group provided further results between 2012 and 2013, when
Mariani et al adopted for the first time a higher band-gap passivation shell of InGaP so as to
suppress surface recombinations in ordered arrays of radial n-i-p GaAs NWs grown by
catalyst-free SA-MOCVD on a GaAs substrate.’?> However, the passivation shell was not the
only element of novelty introduced by this study: as a matter of fact, in order to determine
the optimal parameters of diameter and pitch so as to maximize the absorption, the authors
performed simulations taking into account an encapsulation by a benzocyclobutene (BCB)
layer and a transparent conductive indium-tin-oxide (ITO) layer as top contact, this being a
quite original innovation considering that until then simulations had been performed only on
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bare NW structures.’®01 Moreover, thanks to the sputtering deposition and thermal
annealing of Ti/ITO on the NW tips, the authors were capable to obtain a good ohmic
contact at the top of the cell and this measure, added to the previous one, eventually
allowed them to achieve an efficiency equal to 6.63 % on a PV cell as broad as 0.25 mm?.
Such a solar cell configuration was used also in a later work, in which Mariani et al showed
the possibility to exploit the appreciable optical focusing effect originated by the dome-
shaped ITO layer obtained on the NW tips by a conformal sputter deposition so as to
attenuate light reflection from the surface, thus increasing the PV efficiency up to 7.43 %.8?

Apart from Mariani’s works, the two-year period 2012-2013 turned out to be very
productive for the research in the field of NW-based solar cells also because four different
groups proved to be able of breaking the barrier of 10 % efficiency with different materials.
The first remarkable result came from Samuelson’s group at Lund University, where a 1 mm?
broad ordered array of InP NWs with axial p-i-n junction was epitaxially grown on the same
material; after removing the Au nanoparticles used as catalyst from the top of the NWs by
wet etching, so as to reduce light reflection, the manufacturers were finally able to obtain a
device with n = 13.8 % (Figure 1.8).2* However, the high efficiency was not the only
considerable aspect of this work, since the cell showed significant performances also in
terms of Jsc and Voc; in particular, the former proved to be as high as 83 % of that for the
best performing InP planar cell (despite only 12 % of surface coverage), whereas the latter
one was even higher than in the planar counterpart.

Figure 1.8. (a) Top view SEM image of the ordered array of p-i-n InP NWs (inset tilted 30°). (b) SEM
image and schematics of the NWs after fabrication.®*

The second important work consists in a study which shows the possibility to obtain
efficiencies above Shockley-Queisser limit with single NWs.%3 As a matter of fact, Krogstrup
et al report the fabrication of a PV device constituted of a single GaAs NW epitaxially grown
by MBE on a Si substrate, encapsulated with a SU-8 photoresist and top-contacted with ITO,
having efficiency as high as 40 % with Jsc and Voc equal to 180 mA/cm-2 and 0.43 V,
respectively, on an area of 1.42-:10° cm™. Although obtained on a single NW, such a result is

24



undeniably remarkable, and in order to explain it the authors advanced the hypothesis that
the high efficiency is caused by the significant light concentration due to the fact that the
absorption cross-section of NWs is several times larger than their physical cross-section. This
explanation eventually appeared consistent with the results of their Finite Difference Time
Domain (FDTD) simulations, proving that light absorption in a single NW can be enhanced
from 10 to 70 times than in a thin film of the same material. Apart from the extremely high
efficiency, this study introduced other original aspects, being not only the first example of
device obtained with a free-standing NW, but also the first case in PV history of llI-V NWs
epitaxially grown on Si substrates, a result achieved thanks to the catalyst-free (or self-
catalysed) method previously developed by Fontcuberta et al'%? (cf. Chapter 3). These results
opened up the possibility of a direct integration of 11I-V NWs on Si overcoming the drawbacks
due to Au incompatibility with this substrate'®® and to its detrimental effect on NW
optoelectronics.”

The third main contribution was achieved by Holm et al at the University of Copenhagen,
with a PV device made of a single GaAsosPo2 NW with radial p-i-n junction grown by MBE
and achieving n = 10.2 %.%> Beside the performance, this is the first example of a NW-based
cell made of a ternary alloy, GaAsosPo.2, having been chosen for its band-gap (1.7 eV), which
made it a candidate for the possible development of a NW-based TSC in the future.
Moreover, this work stands out once again the importance of passivation shells (also in this
case InGaP) to prevent the surface recombination of the carriers, a precaution which
eventually turned out to be crucial for improving the cell performances according to the
authors.

The importance of reducing the defects at the interface was further demonstrated by the
fourth work, carried out by Cui et al in Eindhoven and consisting in the fabrication of a 0.25
mm? PV device based on InP NWSs with axial p-n junction epitaxially grown in a regular array
on InP substrate by MOVPE with Au as catalyst.8® The peculiarity of this study consists in the
qguest for reducing the parasitic radial growth on the NW side facets, which causes short
circuit shunting paths as well as the presence of non-radiative recombination centers on the
NW surface. This purpose was achieved by a sidewall etching, performed both in situ adding
HCI to the precursors during the MOVPE synthesis, and ex situ dipping the NWs into piranha
solution after the growth: such a procedure eventually leads to PV devices providing 11.1 %
efficiency.

The research continued in the following years. In 2014, Yao et al from Povinelli’s group
were the first to introduce axial rather than radial p-i-n junctions in ordered arrays of GaAs
NWs.%* Thanks to the optimization of the junction geometry the authors were then able to
develop a solar cell showing n = 7.58 % over a 1 mm? area, a lower value if compared to
other prototypes but still a record for devices based on GaAs NWs and which appears even
more remarkable considering that the nanostructures in question were grown without
passivation shell. The importance of the latter one was put in evidence once again one year
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later, as Aberg et al from Samuelson’s group fabricated a 1 mm? broad cell with ordered
arrays of GaAs NWs with axially p-n junction grown by Au-assisted MOCVD on GaAs
substrates:®° As a matter of fact, thanks to the addition of a radial AIGaAs passivation shell to
suppress surface states, the manufacturers were eventually able to develop a device
showing 15.3 % efficiency and Voc equal to 0.906 V under 1 sun AM1.5G illumination. Such a
result is extremely important not only because it constituted a new efficiency record but also
because it showed how a passivation shell allowed to double the result obtained by Yao et al
on a similar device with yet non-passivated NWs.

The last important progress so far realised in terms of high performances dates to the end
of 2016 and comes from Bakkers’ group. Here van Dam et al fabricated a solar cell made of
NWs with axial p-n junction obtained by dry etch of InP substrate (Figure 1.9).°* Drawing
inspiration from the above-mentioned works at Huffaker’s group, their research also focuses
on the role played by Indium-Tin Oxide as top-contact layer for the NWs: as a matter of fact,
one of the problem introduced by this material is the light reflectance due to the high
refractive index, which can strongly reduce absorption. By controlling the size and shape of
the deposited ITO it is nevertheless possible to reduce the reflection. This approach allowed
the authors to fabricate a 0.25 mm? PV device with 17.8 % efficiency under 1 sun AM1.5G
illumination: such a value is remarkably high, and beside being comparable to the best
performances of 1lI-V single junction planar cells,® it also consists in the highest efficiency
record so far achieved by a NW-based solar cell.

Figure 1.9: (b) SEM image of the cleaved solar cell (tilt angle 30°; white scale bar corresponding to
500 nm). (b) Schematics of the device.*

The results summarized here above do not only represent a remarkable progress in the
scientific research about NW-based single junction solar cells themselves, but they also form
a robust background for that one about TSCs, which can benefit from the experience
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acquired in the former field. Based on these considerations, the main topic of this thesis can
be finally introduced.

1.4 III-V semiconductor NW tandem solar cells on Si substrates

When it comes to NW-based TSCs, it is necessary to distinguish between two different
concepts: those devices made of a dual junction inside the NWs themselves, i.e. without a
PV-active substrate, and those ones constituted by a NW-based top cell coupled to a
substrate working as bottom cell.

In the first case both junctions are located inside the NWSs, which can consist either of
Sit%4 or 1lI-V semiconductors,’® whereas the substrate plays no role in photogeneration,
acting just as a support for the nanostructures.

In the second case, IlI-V NWs contain only one junction and are connected in series to the
Si substrate, provided with the second active zone. This configuration is de facto the
nanostructured counterpart of the IlI-V/Si planar solar cells, and appears particularly
attractive for the chance to exploit the technology of Si manufacturing, cheap substrates and
coupling between 1.7 and 1.1 eV band-gap to maximize the photoconversion. Such a
configuration is also the subject of this thesis, therefore from now on when we mention NW-
based TSCs we refer only to those cells with a NW-based top cell and a substrate-based
bottom one.

As mentioned at the end of the previous paragraph, it was the development of NW-based
single junction solar cells which triggered the idea of employing these nanostructures to
fabricate TSCs by monolithic integration of IlI-V semiconductors on Si substrates. In
particular, the driving force of this process was the above-mentioned possibility for NWs to
release the mismatch-induced strain via surface relaxation, thus preventing the formation of
structural defects at the interface which deteriorate the performances of planar TSCs.

Based on these considerations, the concept of llI-V NW-based TSC was finally proposed by
LaPierre in 2011: in an article which became a milestone of the research in this topic,% the
author described the configuration of such a device and provided a first estimation of its
performances. The results of this work are briefly summarized in the next paragraph to
provide a general example of the general characteristics and properties expected from this
type of devices.
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1.4.1 Theoretical maximum efficiency of NW tandem solar cells

In his work, LaPierre conceived the geometry of the system as a radial p-i-n junction in
NWs of GaAso.77Po.23, having a band gap of 1.7 eV, connected to the p-doped Si substrate
through a p+/n+ tunnel diode. The NW structure is approximated to a cylindrical rod and a
silica mask separates the n- and i-shells of the NWs from the p-doped substrate, which
includes a n-doped emitter to form the PV-active region (see Figure 1.10).

n-NW
B i-NW
[ Ip-NW

p+/n+ tunnel diode
Si0,

I -Si

p-Si

Figure 1.10: Schematics of the NW geometry (not to scale) adopted by LaPierre to model his NW-
based TSC.1%¢

The author solved numerically the continuity and Poisson equations in the single NW to
obtain the photoconversion efficiency and the J(V) curve of the cell by employing the
COMSOL Multiphysics code. The parameters adopted in the simulation are reported in Table
1.1.
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Parameter

Description

MNominal values

de p-doped N'W core diameter 4 nm

h p-doped NW core height T4 nm

e NW i-shell thickness 16.5 nm

(— MW n-shell thickness 21.5 nm

Iy n-doped 5i emitter thickness 30 nm

fn p-doped Si base thickness A0 prm

iy MNW electron mobil ity 402 eV 5

Hp NW hole mobility 4.9 cm¥V-s

Tonw SEH recombination lifetime in N'W 25ns

s SEH recombination lifetime in Si I ms

n Donor- and acce pior-like surface trap 10" cm™*
density

S NW surface recombination velocity 3000 cms !

Sei Sisurface recombination velocity 10cm-s~!

i NW infrinsic carrier concentration 1.3« 10fcm ™

N NW donor concentration (n-doping) 5% 10" em ™

Nanw NW acceptor concentration (p-doping) 5% 10 em ™

Nasi Si donor (emitter) concentration 10°%ecm—

Nasi Si acceptor (base ) concentration 10" em™

L Diameter of substrate surrounding MW 200 nm

(r NNumination I Sun, AM 1.56G

500 Suns, AM1.5D

Table 1.1: Parameters used by LaPierre to model his NW-based TSC.2%®

It is noteworthy that the donor and acceptor concentrations in the NW were both set

equal to 5-:10% cm3, whereas the intrinsic shell was supposed to be also n-doped at 10%¢ cm
3 in consequence of the really occurring background doping.

In order to offer a comparison between a totally ideal case and a non-ideal one, the
author investigated the properties of a cell with both perfectly and imperfectly passivated
NW. In the first case, he assumed the lack of nominal donor and acceptor surface traps and a
NW surface recombination velocity (Snw) equal to zero; in the second, the surface trap
density D was set equal to 10*2 cm™? and Snw equal to 3000 cm s1.2%7 The results of the
simulations for these structures (assuming 1 sun AM1.5 G illumination) are reported in
Figure 1.11. The bottom cell shows Jsc = 19.4 mA cm? and Voc = 0.67 V, whereas the
response of the top cell is Jsc = 20.8 or 20.5 mA cm™? and Voc = 1.27 or 1.23 V for the
perfectly or non-perfectly passivated case, respectively: this is consistent with the presence
of surface recombinations and depletion in non-perfectly passivated NWs, which reduce the
performances of the top cell.”’
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Figure 1.11: J(V) behaviour for bottom, top and tandem cells simulated by LaPierre. The dashed lines
correspond to a perfect NW passivation (D = 0; Snw = 0), while the solid one to an imperfect one (D =
10?2 cm2; Syw = 3000 cm s71).108

As far as the tandem device is concerned, it should be noticed that the overall Jsc is
limited by the smallest short-circuit current generated by one of the sub-units (in this case
the bottom one) and therefore is equal to 19.4 mA cm™, in line with what is expected for
two cells connected in series. For the same reason, the overall Voc of the tandem cell
corresponds on the contrary to the sum of those ones provided by each sub-unit, thus being
equal to 1.94 and 1.90 V for the perfectly and non-perfectly passivated case, respectively.

These J(V) curves determine quite the high fill factor (FF) and efficiencies, with FF = 0.90
and n = 33.8 % (FF = 0.87 and n = 32.1 %) for the perfectly (non-perfectly) passivated cell.
Such a result is very encouraging, because it shows that a NW-based TSC can potentially
overcome the Shockley-Queisser limit of Si-based cells and offer performances comparable
to those ones expected from planar TSCs, plus all the benefits that 1D nanostructures offer
over their 2D counterparts, particularly in terms of costs.

Although this study was limited to the theoretical calculation of the maximal limiting
efficiency and did not consider all the possible sources of non-ideality (e.g. contact
resistance, Auger losses and thermal effects), it definitely served as starting point for other
works aiming at determining which is the effective efficiency value that can be reasonably
expected in a NW-based TSC. As a matter of fact, in the following years several works were
fulfilled with the aim to evaluate the performances which can be expected from real devices.
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1.4.2 Estimation of the efficiency in a real case

The first step in this direction was carried out once again by LaPierre et al with a new
study focusing on the effects of a square array of NWs with radial p-i-n junction.'® In this
case, the aim of the authors was to optimize the cell efficiency by finding the best condition
to obtain a favourable current matching between the two sub-units. In order to do so, they
fixed the NW length (L) at 5 um and calculated the optimal diameter (D) and period (P) for
different band-gaps. The numerical simulations were performed assuming a hexagonal
rather than circular NW section so as to be closer to real cases, despite the fact that no
encapsulation or contact layer was assumed, so that the nanostructures resulted directly in
contact with air. The approach to the problem consisted in firstly solving Maxwell’s
equations in the NWs to determine the absorptance values of square arrays with different D
and P, and then, assuming a system of perfect carrier extraction, to employ the absorptance
values to obtain the photogenerated current by solving the following equation

=4
J =1 f AAMDI(N)dA

(where g is the elementary charge, h the Planck’s constant, ¢ the light speed, A the
absorptance, | the AM1.5G spectrum and A the wavelength), whose solution depends on the
NW geometry through A(A).

With this approach the authors eventually found an optimal value of photocurrent equal
to 17.8 mA cm? generated by NWs with D = 180 nm, P = 350 nm and band-gap equal to 1.72
eV; the consequent J(V) curve showed Voc = 1.94 V, FF = 0.90 and overall efficiency equal to
33.1 %.

This study constituted an important result because the calculations performed on an
ordered array of NWs offered a more realistic evaluation of the cell performances, which
appeared still very promising. However, the fact that this theoretical optimization had been
carried out only on the D and P parameters but at constant L left room for further
improvements, achievable by adapting also the NW length.

That was actually one of the main ideas of the work of Huang et al, consisting in a similar
study to optimize the structural parameters and maximize the detailed balanced efficiency
of a TSC based on a hexagonal array of NWs on Si:®¢ compared to the previous case, herein
the system considered by the authors provided a higher level of complexity, since they set
also the NW length among the tuneable parameters and introduced a transparent
encapsulation and contact layers in the architecture of the device. Moreover, they took into
account the effects of surface recombinations and lattice mismatch with Si so as to better
approximate the real conditions, and they performed a comparison between the
performances of the radial junctions and those of the axial ones. Eventually, the realistic
efficiency limit in presence of surface recombinations was calculated as still higher than 30
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%, while the radial junction came out as more tolerant to surface recombinations than its
axial counterpart.

Despite the greater accuracy of these results, the evaluation of the real efficiency of the
cell could still be improved. For this reason, in 2013 Bu et al decided to perform calculations
taking into account not only the influence of surface recombinations but also the effects of
Femi-level pinning in the NWs and of Shockley-Read-Hall recombinations in the Si sub-cell.?%
Moreover, contrary to the authors of the previous studies, they assumed more severe non-
ideal conditions in terms of surface recombinations, setting a Snw equal to 7:10% cm s. The
final result of the simulations, performed on a cell virtually constituted by a square array of
cylindrical Gao.3slno.6sP NWs with axial p-n junction on Si, provided an overall efficiency equal
to 27.1 %.

Wang et al confirmed these results in a similar study carried out two years later.'1°
Although the model adopted was quite similar to the previous one, herein the authors
investigated also the effect induced by different minority carrier lifetimes for Shockley-Read-
Hall recombinations, so as to reproduce varying densities of mid band-gap trap states. In this
case, the practical efficiency resulted equal to 27.5 %.

In conclusion, based on the simulation performed so far it seems reasonable to expect
efficiencies above 27 % for fully optimized NW-based TSCs operating in reality. This result is
quite promising considering that such a value is higher than the current efficiency record for
both planar TSCs and the most advanced Si-based prototypes, thus making NW-based TSCs a
potentially effective solution which is worth to be tried.

1.4.3 State of the art of NW tandem solar cells

In spite of the large amount of single junction NW-based prototypes already developed
and of the theoretical studies showing the possibility to achieve higher efficiencies, to the
best of our knowledge only one attempt to realize such a device has been so far undertaken.

This was reported by Yao et al from Povinelli’s group in an article!?

which became a point of
reference in this field and explains how the authors were eventually able to fabricate a GaAs

NWs/Si TSC with current matching and voltage addition.

The TSC in question consists of a 1 mm? broad ordered array of GaAs NWs with axial p-i-n
junction monolithically integrated via selective area MOCVD on a n-doped Si substrate
covered with a SizsN4 mask (Figure 1.12). lon implantation and rapid thermal annealing (RTA)
were used to introduce p+ emitter and n+ back surface field in the bottom cell, with boron
and phosphorus, respectively. The NW growth started with the deposition of a highly n-
doped GaAs stem, so as to provide a good connection with the n-doped Si substrate, before
introducing the axial p-i-n sequence with a high p-dopant concentration. The NWs were
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subsequently encapsulated with transparent and insulating benzocyclobutene (BCB) so as to
provide a mechanical stability; the polymer was then etched to expose the NW tips and
allow their top contact through a sputtered layer of a transparent conductive ITO layer. The
ohmic top contact was finally formed by AuGe/Ni/Au deposition followed by RTA, while the
back one was obtained by e-beam evaporation of Al.

Figure 1.12: Schematics of the TSC realised by Yao et al.!!

The NWs were grown with diameter, period and length equal to 300, 600 and 900 nm,
respectively. In particular, the first two values were chosen on the basis of optical
simulations previously performed by the same group to maximize the light absorption,®
whereas the latter one was calculated as the optimal one for current matching.

The performances of the two individual sub-units and of the whole TSC were measured
under 1 sun AM1.5 G illumination, the latter one showing Jsc = 20.64 mA/cm?, Voc = 956 V,
FF = 0.578 and n = 11.4 %. By observing their corresponding J-V curves reported in Figure
1.13, it can be noticed that a good current matching was eventually achieved between
bottom and top cells, whereas there is a slight difference between the Voc of the TSC and the
summation of those of the two sub-units (0.547 and 0.518 V for bottom and top cells,
respectively): this voltage drop is likely due to surface recombinations at the heterointerface
of the bottom cell and to nonradioactive recombinations in the heavily doped NW stem.
Based on these considerations, the authors concluded that the two sub-units of the TSC
were ultimately connected in series with nearly matched currents.
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Figure 1.13: J-V curves for the tandem (black), bottom (red) and top (blue) cells developed by Yao et
al.lll

Although this result appears still low in terms of efficiency if compared to the current
planar devices or to the most advanced NW-based single junction prototypes, such an
outcome is nevertheless very significant, since it finally demonstrates the possibility to put
into practice a NW-based TSC, thus making this study a good starting point for the research
in this field. This structure offers indeed an ample room for optimization: such a purpose
could be surely achieved by using ternary alloys with band-gap equal to the optimal value of
1.7 eV like AlGaAs, GaAsP or GalnP instead of GaAs, and by introducing back surface and
shell passivation in the bottom and top cells, respectively, so as to strongly reduce the
recombination losses.

It is therefore possible to conclude that NW-based TSCs appear as a promising and still
improvable solution to the quest for combining higher efficiencies with lower costs, so that
these characteristics make them one of the possible candidates to develop the next
generation of PV devices.
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1.5 The aim and scope of this thesis

The work herein reported is part of the HETONAN (acronym for “High efficiency tandem
solar cells based on IlI-V nanowires on silicon”) project, a research founded by ANR (Agence
Nationale de Recherche) whose ultimate purpose is to develop prototypes of high-efficiency
TSCs based on NWs of IlI-V ternary alloys with radial p-n junction, monolithically integrated
on a Si sub-cell. The project, involving several public and private laboratories such as the
CNRS-affiliated INL, C2N, IMEP-LAHC and the start-up SILSEF, was divided into several tasks,
each of which was entrusted to some of the partners.

This PhD thesis focuses particularly on the growth by MBE on Si substrates of p-n and p-i-
n core/shell AlGaAs-based heterostructured NWs (AlGaAs is one of the candidate materials
for the development of the final structure), that being the main task assigned to us. At the
same time, it presents also some parallel studies of their structural and optoelectronic
properties carried out in collaboration with other groups at INL and C2N, which were
employed to optimize the configuration of the NWs with particular regards to their junctions
and passivation shells.

Our work started from the optimization of the growth conditions of self-catalysed GaAs
NWs on epi-ready Si substrates as a preparatory step for the growth of AlGaAs NWs, which
were initially expected to form the top cell of the TSC. However, having encountered many
difficulties in growing this ternary alloy by vapour-liquid-solid (VLS) mechanism on Si
substrates covered with an oxide layer, we decided to adopt a more feasible NW
configuration consisting in GaAs/AlGaAs core/shell structures including the radial p-n or p-i-n
junction inside the AlGaAs shell.

Once this objective has been achieved, we committed to transferring onto patterned Si
substrates the know-how so far acquired on epi-ready Si, so as to obtain ordered arrays of
NWs for the top cells. The main difficulty encountered in this step consisted in the quest for
maximizing the vyield of vertical NWs, a necessary condition to develop the TSC, but this
problem was eventually solved with the development of a growth protocol leading to
vertical yields around 90 %.

Moreover, other preliminary studies concerning the encapsulation and top contacting of
the NWs have been performed, in order to eventually advance towards the fabrication of a
NW-based TSC.
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2 Molecular beam epitaxy

2.1 Epitaxial growth by MBE
2.1.1 The principle of epitaxial growth

The word epitaxy (from the Greek “epi”-above and “taxis”-order) defines the deposition
of thin layers of crystalline material on a crystalline substrate, which directs the growth of
the former one thus determining its structural properties.

The epitaxial growth can be divided into homoepitaxy and heteroepitaxy, depending
respectively on whether the substrate and the grown layers are composed of the same or of
different materials. As far as heteroepitaxy is concerned, if the lattice parameter mismatch
between materials is not excessive, the grown layer can adapt to the substrate lattice
parameter: the epitaxial growth is then defined as pseudomorphic. In the case of cubic
materials, the epitaxial layer will be subject to a quadratic strain due to the fact that the
material adopts a different lattice parameter in the surface plane, and will consequently
undergo a different elastic deformation determined by its own Poisson's modulus
perpendicularly to the surface plane. This fact will determine compressive or tensile stresses
in the grown layer depending on whether it adopts a smaller or bigger in plane parameter,
respectively.

As the deposition proceeds, the pseudomorphic layer grows while the elastic energy
stored inside it is increasing. This process continues until the thickness reaches a critical
value in which it is energetically favourable to relax the stress through either the formation
of misfit dislocations at the interface (plastic relaxation) or the formation of 3D islands via a
2D/3D growth mode transition (elastic relaxation): after that, the layer material can regain
its original lattice parameter and the growth continues without mismatch-induced stresses.

As far as the dynamics of the growth process are concerned, the atoms or molecules
initially arriving on the substrate from the vapour phase can be either chemisorbed or
physisorbed; subsequently, they can re-evaporate, interdiffuse in the first atomic layers of
the substrate, or diffuse on the surface until they meet nucleation centres to grow a
subsequent monolayer. The prevalence of one of these three behaviours over the others
depends on the conditions of the system, such as the nature and temperature of the
substrate and the chemical nature and ratio of the reagent flows; this causes the growth
process to occur under kinetic rather than thermodynamic control.

As far as 2D- and 3D structures are concerned, epitaxial growth of thin films or bulks can
take place in three different ways (Figure 2.1): the Frank-van der Merwe mode (also called
“2D” or “layer-by-layer” mode), the Volmer-Weber mode (also called “island growth”) and
the Stranski-Krastanov mode. In the first case, the growth of a new atomic layer occurs only
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after the completion of the underlying one: this happens if the interactions between
substrate and overlayer are stronger than the lateral interactions between overlayer atoms.
In the second case, the atoms form discontinuous structures of one or more atomic layers
called “islands”, which eventually merge together originating a single epitaxial layer; in this
case the interactions between atoms close to the deposited material are stronger than those
with the substrate below. In the third case, which is de facto a mix of the previous one, the
deposition of some complete atomic layers is followed by the formation of islands until the
surface is completely covered.

Frank-van der Merwe mode Volmer-Weber mode Stranski-Krastanov mode

(2 dimensional growth mode) (Island growth mode)

Figure 2.1. Schematics of the three possible epitaxial growth modes of 2D- and 3D materials.'*?

NWs on the contrary are grown through different mechanisms, notably the already-
mentioned VLS, which will be exposed in detail in Chapter 3.

Generally speaking, epitaxial growth can be performed through different techniques, such
as CVD, MOCVD, MOVPE and MBE. In particular, the latter one was adopted to carry out the
growth of the NWs studied in this work thesis, therefore a description of this technique is
summarized in the next paragraph.

2.1.2 Molecular Beam Epitaxy (MBE)

The main concept of MBE consists in employing localized beams of atoms or molecules in
an ultra-high vacuum (UHV) environment, which provide precursors for the growing
material: this technique is successfully employed to synthetize epitaxial layers and
nanostructures of semiconductors, metals and oxides. Modern MBE systems may consist of
several growth chambers (also called reactors) connected in UHV, which often include
integrated surface characterization systems to analyse the growing surface in real time. A
schematic representation of this type of reactor is reported in Figure 2.2. UHV conditions,
corresponding to pressures in the 101°-10'! Torr range, are obtained by employing ionic
pumps, cryogenic panels and Ti sublimation.
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Figure 2.2. Top section of a MBE growth chamber.!

In MBE of IlI-V semiconductor compounds, atomic or molecular beams are thermally
produced by effusion cells (also known as Knudsen’s cells) containing elements or
compounds in equilibrium with their own vapour and directed onto the substrate. Effusion
cells are heated through filaments of refractory metals connected to external power
suppliers; the cell temperatures are measured using thermocouples and regulated by a
system based on PID controls and thermocouple feedback. Since the cells can reach
extremely high temperatures, it is necessary to keep them thermally insulated and to
refrigerate the whole system. This function is performed by a set of panels filled with liquid
nitrogen (cryopanels), whose refrigeration contributes also in maintaining the reactor in UHV
conditions.

Some cells, like those of V-group elements, are equipped with valves for flux control,
whereas the flux of the others, like those of lll-group elements, are tuned by varying their
temperature. Indeed, the flux of atoms or molecules of a certain species i arriving on a unit
area of the substrate per second is related to the cell temperature T; through the following

equation:*4

Ny b
2kBT[ MiTi

39



Where J; is the flux of atoms or molecules, Na the Avogadro number, ks the Boltzmann
constant, pi the pressure measured in the flux by the ion gauge, also expressed as the beam
equivalent pressure (BEP), Mi the atomic or molecular mass.

Cells can be opened or closed at will, thanks to mechanical shutters made of high purity
refractory metal (Ta), so as to measure the flux of a single cell without interference from the
others and to carry out the growth of heterostructures with highly synchronised change of
materials: speed of action of the shutters is indeed so high to allow the growth of structures
with good compositional control and with well-defined interfaces control at atomic scale.
Therefore, thanks to the extremely clean growth environment and to the precise control
achieved over precursor purity and fluxes, MBE systems permit to obtain very abrupt
interfaces, thus constituting a versatile technique for the fabrication of structures such as
quantum dots, quantum wells, superlattices and heterojunctions.

Generally speaking, the substrates are fixed on molybdenum disks (called molyblocks)
either with tungsten pins or with molten indium. A molyblock can be introduced inside the
reactor and placed on its sample-holder: in order to perform uniform deposition, the sample
holder is connected to a motor which allows the rotation of the substrate during the growth.
The sample holder is provided with an ion gauge (Bayard-Alpert gauge) used to measure the
fluxes, expressed in terms of BEP. Once a sample is introduced inside the reactor, its
temperature can be adjusted with a heating filament and controlled with a thermocouple
located on the sample holder. The thermocouple, not being in direct contact with the
substrate but measuring only its radiant heat flux, cannot provide the exact value
temperature, which nevertheless can be measured through an optical pyrometer. In order to
correlate the temperature set by the thermocouple (T:) with the temperature measured by
the pyrometer (Tpyro), it is possible to plot the latter value as a function of the former one
(Fig. 2.3). Since the thermal response is peculiar for every molyblock, depending on the
chemical species deposited on it, and type of substrate, depending on composition, doping
and crystal orientation of the surface, such calibration should be performed for all
molyblocks and types of substrate adopted. This type of graph indicates the approximate
value of Tt to be set in order to obtain a certain Tpyro, although during a growth process it is
still advisable to monitor the temperatures and to correct Tt in real time if needed, so as to
achieve the required Tpyro.

From now on, all the temperatures adopted during the NW growths reported in this
manuscript (cf. Chapter 3, 4 and 5) refer to values measured by pyrometer, unless elsewhere
specified.
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Figure 2.3. Graph reporting Tpyro as a function of T, measured on a substrate consisting of boron-
doped Si(111) (0.02-0.06 Q-cm).

All samples reported in this thesis were realised using EPISURE, a software which
automatizes the growth procedure providing precise control over the opening of shutters
and valves and over the temperature of heating of the effusion cells and of the sample
holder. The files containing all the specifics for a certain sample and selected to perform the
growth procedure are commonly known as recipes. The possibility of automatizing the
growth procedures is a very powerful tool which allows to keep the growth parameters
extremely stable and to obtain a high degree of reproducibility, thus providing great control
over the composition and configuration of the structures.

2.1.3 Reflection High Energy Electron Diffraction

Reflection High Energy Electron Diffraction (RHEED) is an in situ surface analysis
technique, which allows monitoring the growth on a substrate by providing information
about the structural quality of the surface of the growing material in real time throughout all
the phases of a recipe.

In RHEED analysis, the surface of the sample is hit by high-energy electrons (20-30 kV)
with grazing incidence (1°-3°) with respect to the surface. Diffracted electrons are observed
on a fluorescent screen in front of the electron gun placed on the opposite side of the
reactor (Fig. 2.4). Because of the angle of incidence, electron penetration is limited only to
the first atomic layers of the surface; as a consequence, the diffraction pattern puts in
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evidence the characteristics of the substrate surface, whereas it does not provide any
information about the substrate bulk.

:\ Sample

T

@ \ii: Diffracted bear;;‘;-."::::: Phosphor screen

RHEED gun

Effusion cells

Figure 2.4. Schematics of a RHEED system integrated into a MBE reactor.!®®

The diffraction pattern originated is consistent with Laue's theory on the amplitude of the
wave diffused by a crystal lattice, so that the incident wave is not attenuated by diffusion
processes due to any crystalline defects, thus meaning that inelastic scattering is not
considered. As a consequence, the diffraction will occur only if the Ewald sphere associated
to the electron beam intersects points of the reciprocal lattice.

Since in the case of a smooth surface the direct lattice can be approximated to a 2D-only
layer, the reciprocal lattice does not consist of points because they tend to degenerate into
infinite 1D rods along the direction perpendicular to the surface. In an ideal case, the RHEED
pattern (observed on the screen) of the reciprocal lattice should therefore consist of fine
spots arranged in a semicircle (the so-called Laue's rings, shown in Fig. 2.5) because of the
intersection between the 1D rods and the Ewald sphere. However, in reality: 1- the
electronic beam is not perfectly monochromatic and originates an Ewald sphere with a
certain thickness and 2- the surface in not completely smooth and originates 1D rods with a
certain diameter. As a consequence, the intersection between the Ewald sphere and these
1D rods forms segments instead of spots. As a consequence, RHEED patterns of real smooth
2D surfaces will appear as sets of lines.

On the contrary, rough surfaces and 1D or OD nanostructures (like NWs or quantum dots,
respectively) present reciprocal lattices formed by large points instead of 1D rods,
originating from diffraction by transmission mode instead of from a reflection mode; as a
consequence, the Ewald sphere intersecting with such set of points originates also a set of
points, which appears as a network of spots on the RHEED pattern observed on the screen.
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Figure 2.5. Principe of the RHEED diffraction: the case of an ideal 2D surface.!®

As far as grown layer surfaces are concerned, one of the main advantages of this
technique consists in the possibility of investigating their reconstruction or roughness.

However, an important application of the RHEED pattern is the so-called RHEED
oscillations which makes it possible to measure the growth rate of a layer by following the
intensity of the specular beam spot (i.e. the beam as purely reflected by the surface, cf.
Figure 2.5) during this growth. As reported in Figure 2.6, in the case of a 2D growth the
surface can be initially intended as a smooth plane with coverage ¥ equal to zero; in this
case, the electrons of the incident beam are diffused in the same direction, so that the
intensity of the specular beam spot results the highest as possible. Then, when a new layer
starts to form, covering for example a quarter of the surface (& = 0.25), part of the electrons
are necessary diffused in other directions, and the intensity of the specular beam spot is
consequently decreased. When the growing layer reaches half of its coverage (9 = 0.5) the
intensity is at its minimum, then increasing again as the growth continues (e.g. ¥ = 0.75).
Finally, when the new layer is completely filled, the intensity of the specular beam spot is
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once again maximized; as a consequence, by observing the oscillations of the specular beam
spot intensity during the growth (and especially at the beginning of it), it is possible to
measure the period of this oscillation, which corresponds to the growth time of 1ML, and
therefore the growth rate of the layer.

reflection coverage
electron beam

B

i 3
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Figure 2.6. Relationship between the intensity of the specular beam spot and the surface coverage
during the growth of 1ML of a layer.'”

For the growth of IlI-V materials, growth rate measurements by RHEED were used in
determining the fluxes of group Ill and V elements, which were expressed in terms of
equivalent 2D growth rates of the -V material.}'® For example, the flux of Ga can be
expressed through the growth rate of a 2D GaAs layer on the same substrate while
performing the measurements in excess of As (when the growth rate is limited by the Ga
flux). In such conditions, it is possible to measure the growth rate of the IllI-V material for
different temperatures of the Ga cell and, knowing their corresponding BEP measured by the
Bayard-Alpert gauge, to link these values to those of Ga flux. The Ga flux can therefore be
expressed in terms of equivalent growth rate of 2D GaAs and quantified either in
monolayers of GaAs per second (ML/s) or in A of GaAs per second (A/s). This allows to plot a
graphic showing the correlation between the Ga flux (Fga), obtained as GaAs equivalent
growth rate and measured in A/s, and the Ga BEP (Pca), as reported in Figure 2.7.
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Figure 2.7. Flux of Ga (Fsa) as a function of the BEP of Ga (Pga).

This method can be adopted to express also the fluxes of elements of group V. In the
latter case, for example, the flux of As can be determined by performing the same type of
measurements in excess of Ga (when the growth rate is limited by the As flux). In this case
the flux of As is kept constant while that one of Ga is constantly increased until saturation of
the growth rate is reached: this corresponds to the moment in which the oscillation period
of the specular beam spot remains stable despite the increasing Ga flux, thus meaning that
the growth has switched from a Ga-limited regime to an As-limited one. This can be seen in
practice by plotting the equivalent growth rate of GaAs as a function of the Ga flux for
increased As flux, as reported in Figure 2.8(a). This shows that at saturation, experimental
points deviate from linearity and stabilize on a constant value: this allows As flux to be also
quantified in terms of ML/sec or A/sec as equivalent growth rate of 2D GaAs and,
subsequently, to relate the As flux Fas to the As BEP (Pas), as shown in Figure 2.8(b).
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Figure 2.8. (a) Ga-As flux measurements obtained by monitoring RHEED oscillations. (b) Flux of As

(Fas) as a function of As BEP (Pas).
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Another application of the RHEED pattern obtained in transmission mode is the
indexation of spots so as to determine their corresponding plane family; this is particularly
useful when it comes to determine the crystallographic structure of nanostructures. For
example, in the case of GaAs NWs, the indexation of the spots allows to distinguish between
two crystallographic structures, i.e. the cubic Zinc Blende (ZB) (Figure 2.9(a)) and the
hexagonal Wurtzite (Wz) (Figure 2.9(b)) ones, respectively with ABCA and ABA stacking
sequence in the equivalent close-packed directions <111> and <0001>.

e T<111> ) T<0001>

Figure 2.9. lllustrations of the (a) ZB and (b) Wz crystal structures.'’® ZB structure is characterized by
an ABCA sequence of llI-V planes, while Wz structure is characterized by an ABA sequence. Ill and V
atoms are in yellow and blue, respectively.

Thus, considering a RHEED pattern taken from [1-10] azimuth, the ZB and/or Wz crystal
structures of GaAs NWs can be detected. As an example,'?%1?! Figure 2.10 shows a typical
RHEED pattern measured along the [1-10] azimuth of GaAs NWs (grown on a Si substrate)
for which the two phases were present (from Master 2 report of T. Dursap).'?? The position
of the spots is indeed in agreement with an epitaxial growth of the NWs on the silicon
substrate: the GaAs [111] and [110] axis are parallel to the Si [111] and [110] axis,
respectively. The RHEED diagram shows the presence of the mixture of ZB and Wz structures
and the corresponding spots were indexed.
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Figure 2.10: RHEED diagram recorded along the [110] azimuth of self-catalysed GaAs NWs grown on
Si(111) substrate, where ZB and Wz spots are visible and indexed. Green dots report ZB plans taking
into account the two ZB variants. Red squares reports Wz plans. An extinction of the structure factor
Fyyp is responsible for the missing spots of one ZB column over two, and for the one over two Wz

spots along the growth axis. From master report 2 of T. Dursap,'?° in collaboration with J. Penuelas.?!
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3 The growth of self-catalysed GaAs nanowires on epi-
ready Si substrates

3.1 Introduction

As far as the fabrication of NWs is concerned, the already mention VLS growth is
undeniably the most common mechanism, and the correct understanding of the
experimental work reported in this thesis cannot be separated from the understanding of
this mechanism. Therefore, the first part of this chapter will focus the explanation of the VLS
growth of NWs; after that, it will be finally possible to present the experimental results
concerning the nucleation and growth of self-catalysed GaAs NWs on epi-ready Si substrates,
in particular as a function of the incident angle of the Ga flux.

3.2 The Vapour-Liquid-Solid mechanism

By definition, VLS growths are all those mechanisms of NW synthesis in which beams or
flows of molecular or atomic gaseous precursors (vapour) impinge or diffuse into droplets of
molten metals (liquid) randomly dispersed or orderly arranged on a substrate (solid). Once
the droplets are supersaturated by the precursors, these react causing nucleation at the
droplet/substrate interface and subsequent growth of the first monolayer of the NWs; as a
consequence, a new solid/liquid interface forms between the droplets and the grown NWs,
and as long as precursors are provided the process can continue, thus determining the axial
growth of the NWs, as illustrated in Figure 3.1.
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Figure 3.1. Schematics of metal assisted VLS growth of NWs.
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Although the metal droplets act only as gathering centres, the literature concerning this
topic often reports of metal-catalysed growths. Such definition is undoubtedly not correct,
since metal atoms of droplets do not form chemical bonding with the precursors and do not
affect the activation energies of their reactions. For this reason, chemists generally prefer
the more proper definition of metal-assisted growths. However, the term “catalysed” has
become so widespread over the years to be nowadays commonly accepted by the scientific
community; therefore, in this thesis we will use the two terms as equivalent and refer to
metal droplets as catalysts.

VLS growths of NWs can be mainly classified in two types: those processes carried out
using a foreign metal as catalyst, and those ones (also called self-catalysed growths) assisted
by a metal droplet constituted of an element which is also one of the components of the
NWs. Growths catalysed with foreign metals are widely adopted with all epitaxial techniques
in the synthesis of IV, lI-VI and IlI-V semiconductor NWs; generally speaking, the most
common catalyst adopted in this case is Au, although other metals such as Ni, Pd, Pt, Mn, Cu,
Ag, Bi and Fe can also be used.!?? Self-catalysed process on the contrary are employed in the
growth of 1lI-V NWs by MBE, such as Ga in the case of GaAs, GaP, In in the case of InAs, InP
and related ternary alloys.

3.2.1 Theoretical models of NW growth

When Wagner and Ellis synthesized the first NWs in 1964,123 they already assumed VLS
growth to explain their results. The first model describing their growth mechanism was
developed 11 years later by Givargizov,'?* but after this work there was no further progress
for the following three decades, until Dubrovskii and Sibirev extended and generalized
Givargizov’s model in an article published in 2004.'%> This work became the first of many
publications realized until nowadays,*?°7134 as evidence of the renewed interest developed in
this topic as the potential of NWs was understood by the scientific community. Some of
these results have proved to be of inestimable importance and usefulness thanks to the
possibility of explaining the experimental data and providing insight about the physical
processes occurring during the VLS growth, especially in the case of GaAs NWs: it is thus
worthwhile to describe the most significant results in this regard.

One of the main questions about the growth of Au-catalysed GaAs NWs was why these
nanostructures can grow also with a WZ crystalline phase, whereas the bulky counterpart
usually presents a ZB phase.'® The answer was finally achieved in 2007 through the model
developed by Glas et al,*3% which constitutes a milestone in the literature about this subject,
and although this research takes into consideration the case of Au-catalysed GaAs NWs, this
model can be adopted also for self-catalysed ones. According to this work, nucleation
occurring at the liquid-solid (LS) interface (Figure 3.2(a)) is less favourable and originates the
ZB phase, whereas the nucleation at the triple phase line (TPL) is thermodynamically
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favoured and forms preferentially the WZ phase (Figure 3.2(b)). As a matter of fact,
assuming that the nucleation at LS interface occurs with the formation of a 2D island nucleus
of height h, perimeter P and surface A, the change of free enthalpy AG for the nucleation
process eventually results equal to:

AG = —AhAp + Phy;, + A(ysy)

where Ap> 0 is the difference of chemical potential for IlI-V pairs between liquid and solid
phases per unit volume of nucleus, yi the energy of the lateral interface between nucleus
and liquid per unit area and ysy the energy of the substrate-nucleus interface per unit area.
Since Ap and yi are equal for both ZB and WZ phases, whereas ysy> 0 for WZ phase and =0
for ZB phase, the latter results the preferential crystal phase in the thermodynamically less
favourable case of nucleation at LS interface.
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Figure 3.2. Schematics of the nucleation and of the surfaces of interest at (a) the NW/liquid interface
and (b) at TPL.2°

Concerning the nucleation at TPL, this can be thought as a shift of the nucleus from the
centre (site (1), Figure 3.2(a)) to the edge (site (2), Figure 3.2(b)) of the NW; in this case, the

area s formed at the nucleus-vapour (IV) interface eliminates a part TS of the previous LV

one. The difference in formation enthalpies between nucleation sites (1) and (2) reported in
Figure 3.2 is:

AG(a) —AG(0) = aPh(yw — Vi — V1)

where a is the fraction of the island perimeter in contact with the vapour and pw, yiv the
energies of nucleus-vapour and liquid-vapour interfaces per unit area, respectively.
Assuming that yw is close to yi, the equations can be approximated to:

AG(a) — AG(0) = aPh(— tyLy)
Considering an artificial cylindrical nucleus, it is argued that T = sinB, with B the contact

angle between the NW and the droplet.

As a consequence, a nucleus tends to form at TPL provided - yiv sinf < 0: considering that
Vv is a positive value, the difference in energy depends on sinf3 which is also positive
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regarding the value of the contact angle is always 90° < B < 125°. The above inequality is
therefore safely satisfied and consequently the preferential nucleation should always take
place at the TPL.

Afterwards, the authors demonstrate that nucleation of WZ phase for each successive
monolayer is favoured at TPL when the droplet superstation is higher than a critical value.
This result is of extreme importance, because it introduces the possibility to tune the phase
composition of the NWs through the control the droplet supersaturation by tuning the flux
of gaseous precursors.

The study of Glas served as a starting point for the work of other groups. In particular,
Krogstrup et al*3*13% and Yu et al'3’ carried out some relevant studies, respectively on Au and
Ga-assisted GaAs NWs, to demonstrate that it is the catalyst droplet wetting angle the main
parameter to determine the crystal phase.

The investigation of the droplet-NW (LS) interface and the role of the V/III ratio of flux
precursors in the formation of different crystal phases was further deepened by Jacobsson
et al,!3® who exploited the novel technique of in situ TEM to study the LS interface of Au-
catalysed GaAs NWs during the growth. Thanks to this novel approach, the authors were
capable to observe the nucleation and growth of single GaAs monolayers in real time, and
confirming that the key parameter in determining the crystal phase consists in the geometry
of the droplet and notably in its contact angle. As a matter of fact, they noticed that As-poor
fluxes of precursors originate big droplets with a high contact angle ¢ typically > 125°,
determining also a truncated LS interface with edge facet and letting GaAs monolayer
nucleation occur at the edge N, so as to lead to a ZB phase (as illustrated in Figure 3.3(e)). On
the contrary, for As-rich fluxes of precursors, smaller droplets with lower droplet contact
angles ¢ < 125°) and a sharp LS interface are observed (as illustrated in Figure 3.3(d)), on
which GaAs monolayers nucleate at the TPL so as to lead to a WZ phase.

These experimental results can be explained considering that reducing the As/Ga ratio in
the precursor determines a lower axial growth rate of the GaAs NWs and consequently a
higher amount of metallic Ga in the droplet (which consists of an Au-Ga-As liquid solution),
thus letting it swollen and increasing its contact angle. On the contrary, increasing the As/Ga
ratio will enhance the NW axial growth rate and consequently the consumption of Ga from
the droplet and let it shrink, reducing the contact angle. Based on these considerations, the
authors developed a model to calculate the edge facet length y (in the NW growth direction)
(cf. Fig. 3.3(a)) as a function of ¢ for low and high values of gold droplet supersaturation. The
results, reported in Figure 3.3(b), show that NWs can assume truncated shape not only for ¢
> 125°, but also for values lower than 55°. This fact suggests that, although not observed by
the authors because their experimental setup did not allow TEM imaging at high
supersaturation, the nucleation of ZB can occur also at very high As/Ga ratio corresponding
to low ¢ as reported in Figure 3.3(c), while decreasing the V/IIl ratio and consequently
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increasing ¢ leads first to a sharp interface (Figure 3.3(d)) for 55° < ¢ < 125° where WZ
nucleates and then to a truncated one when ¢ > 125° (Figure 3.3(e)), where ZB forms again.

These results are not in contrast with Glas’ previous model but rather represent an
integration of it, since they allow explaining the correlation between the changes in the
droplet composition and volume and the switches in the NW crystal structure with
microscopic phenomena such as variations of the interface profile.
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Figure 3.3. (a) Schematics of the NW/droplet interface profile defining the nucleation site N, the
triple phase line T, the edge facet length y (in the NW growth direction) and the droplet contact

angle ¢. (b) Graphic reporting the edge facet length y as a function of the droplet contact angle ¢, as
calculated for low (blue line) and high (green line) supersaturations. Schematics relating droplet size
to interface profile with (c) ¢ < 55°, (d) 55° < ¢ < 125°, (e) ¢ > 125°.138

Although Jacobsson et al carried out their experiments only on Au-assisted NWs, their
model can be applied also to describe the growth of self-assisted GaAs NWs, as shown by
Kim et al.13°

53



3.2.2 Self-assisted growth of GaAs NWs

The possibility to perform self-assisted growth of IlI-V NWs by MBE constitutes for sure an
important progress in the synthesis of these nanostructures. It avoids the use of foreign
catalysts such as Au and thus prevents the incorporation of impurities into the NWs
preserving their optoelectronic properties. Moreover, at the end of the NW growth it is easy
to evaporate or to consume the remaining droplet. Self-assisted growths allow greater
control over axial growth in the case of the synthesis of core/shell structures: as a matter of
fact, when shell growth is performed on NWs catalysed with foreign metals, the molten
metal at the top of the NW is still present so that the VLS axial growth continues to occur at
the same time as the vapour-solid (VS) radial one, and this fact tends to originate structures
with tapered geometry. On the contrary, in the case of self-assisted NWs the VLS growth can
be totally suppressed by exposing the Ill-group droplet to a flux of V-group precursors only,
so as to consume the droplets progressively. After that, it is possible to perform a conformal
shell growth, while the axial growth is reduced to the VS growth of material at the top facet
of the NWs.

The first example of self-assisted GaAs NWs obtained by MBE dates back to 2008, as
Fontcuberta’s group synthesized this kind of structures on a GaAs(111)B substrates.'? After
that, many other studies have been carried out to investigate the possibility to extend the
self-catalysed growth to other substrates; in particular, great interest was aroused by the
possibility of achieving self-assisted monolithic integration of GaAs NWs on Si substrates. In
this case, it has been observed that the silicon oxide layer present on the surface of the
sample plays a key role in the growth process, both in the case of epi-ready silica with low

140 141

thicknesses'*° and in that one of specimens covered with thicker patterned masks of SiOx.

As far as the self-assisted growth of GaAs NWs on epi-ready substrate is concerned,
because of the roughness of the surface, Ga droplets tend to form spontaneously on it when
the sample is exposed to the flux of precursors. Indeed, part of the silica layer can be
reduced by Ga at the usual growth temperature (around 600°C), in the following

reactions:142

SiO2+4 Ga—> Si+2Ga0
SiO, + Si - 2 SiO
SiO2 + 2 Ga = SiO + Ga0

Since both SiO and Ga,O desorb around 600 °C, the products of the reactions will
evaporate, thus causing the presence of pinholes on the epi-ready silica and exposing the
bare silicon surface at their bottom. Subsequently, Ga droplets are formed in these pinholes
which constitute the nucleation point for epitaxial growth of NWs. As a consequence, no
preliminary treatment of the surface is needed to obtain self-assisted growth. However, in
order to control the NW density, it is possible to perform a pre-deposition step to form Ga
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droplets at lower temperature, followed by a controlled thermal annealing to let the metal
reduce the oxide so as to form the pinholes. Subsequently, once the substrate is exposed to
the flux of precursors, the droplets will re-form and the NWs nucleate in these pinholes. For
a detailed explanation of this mechanism we refer the reader to the paragraph 3.3.3.

3.3 The axial growth of NWs on Si(111)

In this section we will present experimental results concerning the axial growth of self-
assisted GaAs NWs on epi-ready Si(111) substrates. Since our group had already performed
systematic studies!*3714> of the influence of growth temperature, V/IIl flux ratio and Ga pre-
deposition on the NW growth, we did not further investigate the impact of these
parameters, rather using the know-how previously developed as the starting point of this
research, the growth parameters having been already optimized. Therefore, our preliminary
studies were initially limited to checking the influence of the growth temperature (Paragraph
3.3.2), particularly in order to adapt the thermocouple based temperatures to the molyblock
employed for this work: 1- to verify whether we could reproduce properly the optimal
growth conditions, and 2- to investigate the role of Ga pre-deposition (Paragraph 3.3.3).
However, we have also decided to study the influence of another parameter on the NW
growth: the incident angle of the Ga flux with the substrate normal which is the NW growth
direction for vertical NWs. As a matter of fact, since our MBE reactor is equipped with two
Ga cells having different angles with respect to the substrate normal (=9.3° for the so-called
Ga(7) cell and =27.9° for the so-called Ga(5) cell), it was possible to carry out a detailed and
systematic analysis to determine the influence of this parameter on the NW growth. The
results of this broad study are reported in Paragraph 3.4, and show that different angles can
have significant effects on the NW growth. When non-mentioned, the NW growths were
realised with the Ga(5) cell.

3.3.1 The growth protocol

The protocol developed in our group requires that before growth a pre-deposition of Ga
for 2 sec is performed at temperature Tpre-dep Of 510-530 °C with Ga flux (fea) equal to 0.5
ML/sec in terms of equivalent growth rate of 2D GaAs layers on GaAs(001) substrate. This
allows the formation of Ga droplets on the epi-ready substrates. Subsequently, the
temperature is raised with a slow ramp (7 °C/minute) up to the growth temperature Tgrowth =
600-610 °C (a temperature range which provides a high density of NWs and a low presence
of parasitic structures). This raise in temperature permits the reduction of SiO, by the Ga
droplets and the formation of holes in the oxide layer whose thickness was estimated to = 2
nm. Once Tgrowth is reached and stabilised, the growth is started by opening the effusion cells
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of Ga(5) and As at the same time. As for pre-deposition, the value of Fg, is set equal to 0.5
ML/sec also during the growth, whereas the flux of Ass tetramers (Fas) is equal to 1.15
ML/sec: this corresponds to As/Ga flux ratio equal to 2.3, a value chosen to produce ZB GaAs
NWs with a low density of twin planes and/or Wz segments and with a good morphology,
the as-obtained NWs presenting almost constant diameter along their whole length (in the
1-2 um range) (Figure 3.4). The growth is finally stopped by closing the effusion cells of Ga
and As at the same time. After that, the temperature is decreased as fast as possible to
prevent As desorption from the NWs and to preserve the Ga droplets at the NW tips.
Throughout the whole procedure the sample is rotated at 5 rpm.

NW growth

Figure 3.4: (a, b) RHEED diagrams along 1-10 azimuth recorded respectively during the NW growth
and the droplet consumption: (a) pure ZB structure with the two variants indicating the presence of
twin planes in some parts of the NWs, and (b) apparition of the Wz structure when the droplet is
consumed. (c) 2 waves dark field TEM image of core/shell GaAs/AlGaAs NWs grown (with Ga(5)
source, cf. Paragraph 3.4) with the optimal growth procedure. The detail of the NW structure will be
better described in Chapter 4. Note that all the TEM imaging of NWs presented in this thesis was
realised by G. Patriarche at C2N.

This protocol is the standard one adopted in this work; therefore, from now on it is to be
assumed that each sample of GaAs NWs reported herein, unless otherwise specified, was
realized according to this procedure.

The molyblock employed for this work is in a 2-inches In-free molyblock covered with
GaAs and capable to carry a 1 cm x 1 cm sample. The Si substrates adopted consisted of
0.02-0.06 Q-cm B-doped epi-ready Si(111), with SiO2 surface layer about 2 nm thick. Before
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the growth, all substrates were sonicated for 10 minutes in acetone and ethanol to remove
possible contaminants from the surface, and dried under nitrogen flow; subsequently, they
were degassed at 200 °C in UHV and finally introduced into the MBE reactor.

3.3.2 The influence of the growth temperature

The influence of the growth temperature was investigated with a series of samples
realised at different Tgrowth. In particular, the purpose of this analysis was to evaluate the
impact of Tgrowth ON the surface density of NWs and on the presence of parasitic structures,
so as to verify the reproducibility of the results previously obtained in our group with this
protocol. The results are reported in Figure 3.5 where it can be noticed that parasitic
structures, largely present at lower Tgrowth such as 585 °C (Figure 3.5(a)), are progressively
decreasing as Tgrowth is increased up to 610 °C (Figure 3.4(b, c, d)). The graphic in Figure 3.5(e)
reports the density of vertical NWs and parasitic structures as a function of Tgrowth. It can be
noticed that a NW density maximum at Tgrowth = 590 °C (d = 2.1 NW/um?): this can be likely
explained assuming that at the lower growth temperature of 585 °C, the Ga droplets tend to
evolve more into a large population of parasitic structures at the expense of the vertical
NWs (d =1.2 NWs/um?). On the contrary, increasing the temperature at 600 and 610 °C
reduces the parasitic structure density, but it also disadvantages the nucleation and growth
of NWs due to increased desorption of Ga and As adatoms from the sample surface, leading
to lower densities (1.4 and 1.0 NWs/um?, respectively). Such results are consistent with
those ones previously reported by our group,**1#> and confirm the reproducibility of the
protocol. As far as the NW length L and diameter D are concerned, it can be noticed that in
the range of Tgrowth here adopted, there are no significant differences on these values (Figure
3.5(f, g).

We remind the reader that all the values of NW diameters reported in this thesis were
obtained by measuring the very NW top (right below the Ga droplet).
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Figure 3.5. (a-d) SEM images (45°-tilted) of GaAs NWs grown for 10 min at different Tgrowtn. The values
reported in yellow corresponds to Tyre-aep, Whereas those in red are Tgrowth adopted in each case. The
white scale bar corresponds to 500 nm. Graphic reporting (e) the density of NWs and parasitic
structures, (f) the NW length and (g) diameter as a function of Tgrowth.

Generally speaking, the choice of the growth temperature depends on two main needs: 1-
maximizing the rate of vertical NWs and 2- minimizing the density of parasitic structures. As
shown by the experimental results, Tgrowth = 590 °C is particularly favourable in the first case,
but not in the second one. For this reason, we came up with the conclusion that Tgrowth in the
600-610 °C range is the best compromise for our purpose.
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3.3.3 The role of Ga pre-deposition

Performing a Ga pre-deposition before the growth, the overall process can be exemplified
by the following Figure 3.6. It, illustrates the formation of droplet at 520 °C (Figure 3.6(a,b)),
the formation of holes as a result of silica reduction while increasing the temperature (Figure
3.6(c)), the re-formation of Ga droplets at 610 °C when the sample is exposed to Ga and As
fluxes (Figure 3.6(d)), and finally the nucleation and axial growth of the NWs (Figure 3.6(e)).

This type of procedure has been already employed by Tauchnitz et al**¢ and is considered
a very advantageous approach, since it permits to decouple the NW density and diameter
from their length.

a) b) c)
Ga 520 °C 520 °C 610 °C

‘ +7 °C/min
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Ga As4 ‘ ,
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Figure 3.6. Schematics of the process of Ga pre-deposition and growth. (a) The epi-ready Si substrate
is exposed to a flux of Ga (2 sec with Fea = 0.5 ML/sec). (b) Ga droplets form on the surface. (c) While
raising the temperature to Tgowth, Ga reduces SiO, forming holes in the surface layer. (d) When the
sample is exposed to the Ga and As fluxes, Ga droplets re-form inside the holes and in contact with
the bare Si. (e) When the Ga droplet is saturated by As, nucleation occurs at Ga/Si interface and the

axial growth starts.

In order to verify and illustrate this mechanism, we took SEM images for each step of the
procedure from Ga pre-deposition to the very beginning of the NW growth (using a different
sample for each stage, due to the impossibility of stopping and re-starting the growth to
check).
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Results are reported in Figure 3.7. Generally speaking, Ga pre-deposition on Si(111) in
standard conditions (2 sec with a Fe, = 0.5 ML/sec) leads to droplets having diameter around 15
nm and density in the 15-40 units/um? range: this is confirmed in Figure 3.7(a), where the
density (d) = 30 /um? and the diameter (D) = 16 + 3 nm. While increasing the temperature
gradually up to 600 °C, we expected Ga to reduce SiO, forming holes, as mentioned above,
until all Ga,0 desorbs: this is consistent with Figure 3.7(b), where no more droplets are
visible on the surface after the thermal treatment. Once stabilized the growth temperature,
we performed a first growth exposing the substrates to both Ga and As for 2 sec only. As
expected, this caused the re-formation of Ga droplets on the surface (Figure 3.7(c)), whose
values of density is slightly lower but still consistent with those observed in Figure 3.7(a), in
this case d = 25 /um?, whereas D = 22 + 3 nm is higher than in the previous case. Such a
value can be probably attributed to the higher temperature employed in this case, since to
higher temperature corresponds a higher Ga mobility,'3® which can increase the diameter of
the droplets at expense of density. A high magnification image of these droplets is reported
in Figure 3.7(d): it is possible to measure the droplet contact angle (9) which is = 51° + 4°.
This value is consistent with that one reported for Ga on bare Si(111),*4” whereas 9 for Ga on
SiO, is known to be = 116°.'* This result is quite significant, since it corroborates the
hypothesis that Ga droplets reform preferentially in the holes originated by silica reduction,
thus being in contact with the underlying bare Si rather than with the silica surface layer.
After 12 sec of GaAs deposition the system appears as essentially unchanged as shown in
Figure 3.7(f): only the droplet density increases to = 40 /um? and while D =22 + 3.0 nm and 9
~ 51° + 6° (measured from Figure 3.7(f)) remain unchanged. After 20 seconds, the first NWs
have already formed and the sample surface is covered by NWs and droplets (Figure 3.7(g,
h)), with an overall density of structures = 25 units/um?. The diameter of the droplets has
slightly increased to = 27 + 4 nm while the contact angle has not changed significantly (8 =
56° + 4°). Vertical NWs have length (L) and diameter equal to 58 + 4 nm and 11 = 4 nm,
respectively, and a density of = 1.2 NWs/um?2. Such a value is much smaller than the total
density of structures, and still in the density range measured for longer growth times at
these conditions (d = 1.0-1.5 NWs/um? in the case of NWs grown for 10 minutes with this
procedure, as shown in Figure 3.8). This means that only a fraction of the droplets take part
in the axial growth and that the droplets which evolve into NWs nucleate at the very
beginning of the growth, rather than at a later time.
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Figure 3.7. SEM images showing all stages of the standard procedure as illustrated in Figure 3.5; (a)
Top-view of Ga droplets obtained after pre-deposition at 520°C. (b) Top-view of Ga-free surface after
the temperature increasing to Tgowtn=600°C. (c) Top-view and (d) cross-section 5° tilted view of Ga
droplets re-formed after 2 sec exposition to Ga and As fluxes. (e) Top-view and (f) cross-section 5°
tilted view after 12 sec exposition to Ga and As fluxes. (g) 45° tilted view and (h) cross-section 5° tiled
view after 20 sec exposition to Ga and As fluxes. The values reported in yellow correspond to the
temperature at which every step was performed. White scale bars corresponds to 500 nm in (a, b, c,
e, g) and to 100 nm in (d, f, h).

Figure 3.8. SEM images (45°-tilted) of GaAs NWs grown for 10 minutes with the standard procedure:
the density of vertical NWs is equal to 1.4 NWs/um?. The white scale bar corresponds to 500 nm.

By comparing the results in Figure 3.7(h) and Figure 3.8 it can also be noticed that NWs
grown in standard conditions for 10 min present a diameter = 50 nm, whereas after 20 sec D
is only = 11 + 4 nm: in order to explain this diameter increase we refer the reader to the
following paragraph 3.4.
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3.4 The impact of the Ga flux incidence angle

3.4.1 Introduction

At the beginning of this thesis work, the reactor employed (RIBER 32) was equipped with
a Ga source in position Ga(7), i.e. with an incidence angle a = 9.3° between the incident flux
of Ga and the direction normal to the substrate surface (the growth direction of vertical
NWs). Observing that the NW growth results in this configuration were different (in
particular concerning the axial growth rate) than those obtained with another reactor (RIBER
C21) of our group, having a = 40° for the Ga cell (and for all cells), we decided to move the
Ga source from Ga(7) to Ga(5) position. In this setting, a is equal to 27.9°, permitting to
operate in a configuration “more similar” to that of the RIBER C21 reactor: that is why in this
thesis are reported samples grown either with Ga(7) or Ga(5) source.

The comparison between the experimental results obtained using different Ga sources
triggered our interest for the influence of the Ga flux incidence angle a on the NW growth. In
particular, this was first noticed on preliminary results obtained by Guan Xin, at that time
PhD student in our group. She already reported a significant difference in length between
NWs obtained in growth conditions which were nominally the same in terms of Tgrowth, V and
Il fluxes, growth times and procedure steps, but whose Ga sources were different (Figure
3.9).1%
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Figure 3.9. Graphic from Guan Xin’s Ph. D thesis!* reporting the length of GaAs NWs as a function of
the growth time. It can be observed that Ga(7)As NWs (red) present two different growth regimes,
whose switching point is at 20 min (NWs about 3 um long), and that Ga(5)As NWs grown for 90 min
(black spot) are clearly outliners of their curve, showing a noticeable higher length.

It was observed that GaAs NWs grown with Ga(7) (also known as Ga(7)As NWs) present
two different growth regimes, depending on the growth time, and that their length was
significantly lower than that one of GaAs NWs grown with Ga(5) (also known as Ga(5)As
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NWs) for long growth times (80-90 min). Based on these results, we decided to investigate
the role of the incidence angle a for the two cases of Ga(5) and Ga(7) sources.

The influence of the incidence angle a of the sources has been already taken into account
by several groups to explain their own experimental results, although in quite different
contexts than ours.148-152

In this regard, it is worth mentioning the work of Tchernycheva et al,*® who studied the
changes in shape of Au-assisted InAs NWs as a function of the growth duration, and
observed a significant lateral growth only in the inferior part of NWs grown for longer times
(at least = 20 min in their growth conditions). This eventually leads to a bottle-neck
morphology as illustrated in Figure 3.10. Based on these considerations and on previous
models developed by Dubrovskii et al,1?1?7 Tchernycheva et al developed a semi-empirical
analytic model for the diffusion-controlled growth of NWs by VLS-MBE taking into account
the incident angle of the element Il flux to provide a qualitative description of the system .
The model is based on the assumption that the variation of the volume per unit time for a
NW with height H and droplet radius Ro is equal to mRo?(dH/dt), and if V denotes the nominal
deposition rate (on the substrate), the NW growth is supplied by three contributions:

1- The direct impingement of atoms on the droplet:
VTR3 cos a

2- The diffusion of adatoms from the substrate to the droplet (with lp the diffusion length
on the substrate):

Vr[(Ry + 1y)?> — R3] cosa
3- The diffusion of adatoms from the lateral surface of the NW
V2RyH(t) sina

It follows that the relationship between the NW growth rate and a can be expressed with:

dH
TRE e Vr(Ry + lg)? cosa + V2R, H(t) sina

This model, developed without considering the desorption of the adatoms, can explain
the observed NW shape. When the NW length exceeds the adatom diffusion length on the
lateral facets, only the adatoms arriving on the upper part of the NW will participate in the
axial growth, whereas those in the bottom part will eventually be condensed on the facets
and increase the NW diameter.
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Figure 3.10. Illustration of the system considered by Tchernycheva et al.2* Beyond a certain growth
time the NWs develop bottle-neck morphology.

Another relevant work in this field is the study by Glas et al.**° In this case, the authors
developed a quantitative model of the self-assisted growth of IlI-V NWs, which considers
only the As species and, contrary to the previous one, assumes a constant NW radius during
the whole growth. The incidence angle a is introduced in order to explain why the NW
growth rate varies almost linearly with the As flux. For this purpose, the authors consider the
balance between the amount of Ga adatoms supplied to the droplet, either the one from
direct flux (the only directional quantity, which strongly depends on a) or the one re-emitted
from the environment,*>3 and the quantity of As which is depleted either by the growth or by
re-evaporation (Figure 3.11). Contrary to the case of Ill-group adatoms, no contributions
from the diffusion of As adatoms on the NW facets are taken into account.

\% ﬁp__

As (cy,)
Ga (l ~Cu

)
S

Figure 3.11. Illustration of the self-catalysed VLS growth of GaAs NWs from the model of Glas et al.*>°

As current supplying and emptying the droplets are schematised respectively with empty blue and
full red arrows.
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Like many other experimental works,*>102140154 gnd contrary to our case, results in
Reference!™® are based on the assumption that the self-assisted growth of llI-V NWs
depends only on the flux of As, being independent from the Ga flux. This is due to the fact
that all these authors start from the basic assumption that the group Ill flux is sufficient for
the droplet to survive with a constant volume. As shown in the following paragraph, this is
not always the case as a function of o, and it is precisely on the basis of this consideration
that our experimental results can be explained.

3.4.2 Experimental results on axial (and radial) growth rate as a function of
Ga flux incidence angle a

In order to obtain experimental evidence into this issue, we introduced one more Ga cell
in position Ga(7) of our reactor so as to carry out a detailed and accurate study about the
influence of the Ga flux incidence angle a on the NW length and morphology. With such a
purpose, many samples were grown at nominally the same experimental conditions for
several growth times (5, 10, 15, 20, 30, 40, 60 and 80 min), so as to obtained a vast and
complete series of samples to be compared. In all cases the samples were grown with the
standard procedure (tpre-dep = 520 °C, Tgrowth = 600-610 °C, Fsa = 0.5 ML/sec, Fas = 1.15 ML/sec,
R(Fas/Fea) = 2.3) either with Ga(5) or Ga(7) flux. In all cases we use Ga(5) source in order to
perform the Ga pre-deposition, so as to be certain of reproducing also the same conditions
in terms of Ga droplet size and density.

The results of this growth campaign are reported in the SEM images in Figure 3.12 and in
the graphic in Figure 3.13. The difference between the two cases was confirmed: concerning
the NW length, it can be noticed that while NWs grown for growth times shorter than 20 min
present the same length, for growths longer than 20 min, Ga(5)As NWs are always
significantly longer than their Ga(7)As counterpart. Moreover, it can be observed that the
experimental points of Ga(5)As can be fitted by a linear regression. On the contrary, those
for Ga(7)As lie on the same one for shorter growth times, whereas the points obtained with
times longer than 20 min are fitted by a different linear regression. As a consequence, it is
possible to conclude that the growth process undergoes two different regimes (named
Regime 1 or R1 and Regime 2 or R2), thus confirming the preliminary results obtained by
Guan Xin, although in our case a linear rather than super-linear trend is observed in Regime
1.1%5 By interpolation of the red line fitting Ga(7)As with the black one for Ga(5)As it is
possible to determine the values of growth time and NW length which mark the separation
between the two regimes. These correspond to a growth time of about 17 min and a NW
length of about 1.8 um, as marked respectively by the vertical and horizontal dashed blue
lines. The axial growth rate for Ga(5)As NWs is 1.9 nm/sec (= 7 ML/sec), whereas for Ga(7)As
NWs it decreases from 1.9 nm/s in Regime 1 to 0.83 nm/sec (= 3 ML/sec) in Regime 2.
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Furthermore, the SEM images show that the incidence angle a affects not only the NW
size and morphology but also the droplet shape. In fact, whereas Ga(5)As NWs show a Ga
droplet roughly constant in shape on their tip for all growth times, the droplets on the
Ga(7)As NWs tend to decrease in size and sometime even disappear as the growth time
increases, more specifically when the growth time is superior to 20 min.
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Figure 3.12. 45°-tilted SEM images of Ga(5)As NWs (a, ¢, e, g, i) and Ga(7)As NWs (b, d, f, h, j) as a
function of the growth time (growth time in minutes indicated by yellow number ). The white scale
bars correspond to 500 nmin(a, b, c,d, e, f)andto 2 umin (g, h, i, j).
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Figure 3.13. Length of Ga(5)As NWs (black) and Ga(7)As NWs (red) as a function of the growth time.
The vertical dashed blue line mark the separation between the two growth regimes observed for
Ga(7)As NWs, while the horizontal one shows the corresponding NW length.

Not only the length but also the diameter is affected by a, as illustrated in Figure 3.14;
herein it can be noticed that the diameter of Ga(5)As NWs and Ga(7)As NWs increases
linearly with the growth time but the Ga(7)As NW diameter increases much more slowly
than those of the Ga(5)As NWs .
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Figure 3.14. Diameter of Ga(5)As NWs (black) and Ga(7)As NWs (red) as a function of the growth
time.

In order to determine whether linearity persists also for shorter growth times, we grew
Ga(5)As NWs and Ga(7)As NWs also for 20 sec, 1 min and 3 min (Figure 3.15). Although these
samples were grown with a higher ratio R(Fy/Fu) than the standard value of 2.3 (likely = 3.1)
because of a technical problem with the gauge that prevented an exact measurement of the
As flux, we decided to compare them with the previous series of data of Figures 3.13 and
3.14. Graphics of the NW length and diameter as a function of the growth time are reported
in Figure 3.16: black and red spots correspond to Ga(5)As and Ga(7)As growths respectively,
while squares and triangles correspond respectively to R(Fy/Fu) of 2.3 and likely = 3.1.

The difference in R(Fv/Fu) between shorter (< 3 min) and longer (=5 min) growth times is
not so significant in this particular analysis, since our purpose is to define a qualitative trend
of the curves rather than a quantitative ones, therefore small discrepancies between the
two cases can be still considered as acceptable. Observing the evolution of the NW length as
a function of the growth time in Figure 3.14(a), it can be noticed that both Ga(5)As and
Ga(7)As curves have a substantially linear trend.

On the contrary, it can be observed that the trends in the graphic of the diameter as a
function of the growth time in Figure 3.16(b) are quite different, showing that the diameter
increase rapidly for short growth times before passing to a linear regime for the longer ones.
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These differences in diameter evolution are confirmed by the comparison of the SEM images
of the two cases. Given the tapering coefficient:14°

(De —Dp)

1
I 00

T% =

with D; and D, diameter at the top and the bottom of the NW, respectively, Ty results
equal to 4-6 % for shorter growth times, but only 0.5-1% for the longer ones. As a
consequence, it is possible to say that for both Ga(5)As and Ga(7)As the NW diameter

increases much faster in the first 5 min of growth rather than in longer times.

Figure 3.15. SEM images (5°-tilted cross section) of (a, b, c) Ga(5)As NWs and (d, e, f) Ga(7)As NWs
grown for short times. The white scale bars correspond to 500 nm.
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Figure 3.16. Graphics of: (a) the NW length and (b) diameter as a function of the growth time. Black
and red curves correspond to Ga(5)As NWs and Ga(7)As NWs, respectively, whereas triangles and
squares stand respectively for shorter time growths (< 3 min), (likely) realised with R(Fy/Fy) = 3.1, and
for longer ones (= 5 min), performed with R(Fy/Fu) = 2.3.
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Based on these results it can be concluded that, under the same experimental conditions,
the incident angle a of the Ga flux plays a fundamental role in the NW growth. In order to
analyse these results, we have used the model developed by Tchernycheva et al? to the case
of self-assisted GaAs NW growth to evaluate: 1 the Ga flux and the related amount of Ga
atoms which contribute to the filling of the Ga droplets as a function of the capture surface
(and thus of a), and 2- the amount of Ga atoms involved in the growth of the GaAs NWs and
thus contributing to the emptying of the Ga droplets.

3.4.3 The semi-empirical analytic model

As mentioned in the model of Tchernycheva et al,'*® the atoms coming from the Ga flux
are collected by the Ga droplets via 1- direct impingement, 2- diffusion on the NW facets, 3-
diffusion on the substrate. We remind the reader that in this model no desorption of Ga
adatoms is considered. Generally speaking, given a certain surface of capture Scapt, the
amount of atoms Qcapt collected per second and per unit of surface under a nominal flux
having an incidence angle o with the NW growth direction, further denoted FN® (cf. Figure
3.17), corresponds to:

— Na
Qcapt - ScaptF
and is expressed in ML nm? sec™®.

Thus, we have to express and calculate: 1- the capture surfaces Scapt for these 3 cases as a
function of a, and 2- the nominal flux FN¢,

Concerning the nominal flux of Ga(5) and Ga(7) cells, they can be calculated from the Ga
flux Fsub, measured on the surface S of the substrate taking into account the projected
surface S’ (cf. Figure 3.17) by:

Foup = FN%sin@ = FN% cosa

As already mentioned in Chapter 2, Fsy» can be expressed as the growth rate in ML/s,
measured by RHEED, of a 2D GaAs layer.'> Hence, in our particular case with Fsy = 0.5
ML/sec, it follows that the nominal fluxes FN* of Ga(5) and Ga(7) cells are:

_0.5ML/sec 0.5 ML/sec

FNe & = = = 0.57 ML
Ga(s) cosa cos 27.9° [sec
0.5ML/sec 0.5 ML/sec
FNe & = = = 0.51 ML
Ga(7) cos a cos 9.3° 0.5 [sec
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L < A¢ Lyw > A

Figure 3.17. Schematics to define the different parameters used in the model.

NB: It can be noticed that, considering that the flux captured by the NW facet, Fyacet, is
equal to:

Fracet = FN*sina
It results:

F _ Fsub
facet coS a

sina = Fgptana

To calculate Qcpt, as above mentioned, three different capture surfaces are to be
considered: on the substrate (Ssub), on the NW facets (Sfacet), and on the Ga droplet (Sdrop),
schematised in green, blue and yellow respectively, as reported in Figure 3.17.

These can be expressed as following:
F0r Ssub:
Ssup = [T(ryw + A5)?* — mryy ] cos a

where A is the diffusion length of the Ga adatoms on the substrate and rnw the NW radius.
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For Stacet, We have to consider two cases as a function of the NW length Lyw:
1- If Law < Af the diffusion length on the NW facets:

Stacet = 2rnwlywsina
2- If Law > s

Stacet = ZrNW/lfsin a

For Sdrop, if we consider a semi-spherical droplet with a contact angle B equal to ©/2, it
is:1%°

(1 + cosa)mR ;*
Sdrop = 2

where Rqis the droplet radius, which can be expressed as: Rq = rnw/sinp.

Note that, assuming a Ga droplet with a contact angle B = 135°, i.e. in the case where 3 >
o+ 7t/2, Sdrop becomes: 1>°

Sarop = ﬂRdZ
thus being independent of a.

For the sake of simplicity, in this simple model we will consider a constant droplet volume
during the NW growth.

The total surface of capture Scapt being the sum of each contribution, it is possible to
notice that Scapt depends on Lnw. Accordingly, different phases can be identified in the
growth as a function of Lnw (cf. Figure 3.18).

Scapt. = Squb + Stacet + Sdrop

Scapt. = [TM(rnawths)? - Tyw?] cosa. + + mR,? Lyw =0
Scapt. = [M(rnwths)? - Tiyw?] cosa + 2y Lyw Sina + TR Law [0-24]
Scapt. = +  2rgw M Sina + TR 42 Law > A

Figure 3.18. Expression of the capture surface depending on Lyw, with a droplet with B = 135°.

At the very beginning, when Lyw = 0, the only contribution to Scapt are Ssub and Sdrop. Then,
when Lyw is lower or equal to As, Scapt includes also the contribution from the NW facets Stacet.
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Subsequently, when Lnw > As, Stacet is limited by Asr. Note also that the Ga adatoms gathered
from the substrate cannot reach anymore the Ga droplet, so that this contribution is
suppressed.

Knowing that As can be estimated around 100 nm?136156:157 gnd that As is about 1 um,*8 it is
thus possible to estimate the area of each surface of capture. The results of the calculations
for the representative case of a NW with rnw = 30 nm and a droplet with f=135°, are
reported in Figure 3.19.

S, %24 = 44420 nm? Sarop®3® = 5660 nm?
Lynw =0
Sep% = 49610 nm? Sarop®™ = 5660 nm2
SsubGa(S) = 44420 nm2 SfacetGa(5) = 28080 nm?2 SdropGa(S) = 5660 nm?
Law = A
SsubGa(Y) = 49610 an SfacetGa(7) =9700 nm2 SdropGa(7) = 5660 I"ll"ﬂ2
SfacetGa(S) = 28080 nm? SdropGa(S) = 5660 nm?
Law > A
Stacet®2” = 9700 nm? Serep®@) = 5660 nm?

Figure 3.19. Calculation of the capture surfaces (in nm?) depending on Lyw, in the case of a NW with
raw = 30 nm and a droplet with p=135°.

In order to obtain the amount of Ga adatoms feeding the droplet, it is sufficient to
multiply each term by the corresponding nominal flux (we remind the reader their values of
FNaga(s) = 0.57 ML/sec and FN%,(7) = 0.51 ML/sec). These data, reported in Figure 3.20, denote
a significant difference in terms of captured Ga atoms between the two Ga cells, in particular
concerning Stacet.

Whereas for Lnw = 0, Qcapt is almost the same with both cells, a Ga(5)As NW gathers more
Ga adatoms than its Ga(7)As counterpart as Lnw increases, i.e. when the contribution of Stacet
becomes predominant (cf. Figure 3.20).
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Q%) = 25320 ML nm? sec™! Qgrop®2® = 3230 ML nm? sec™!

Q%27 = 25300 ML nm? sec! Qurep®™ = 2890 ML nm? sec™

Law = A
Qx5 = 25320 ML nm? sec™! Qyaees®®® =16010 ML nm? sec’ Qgr0p®2® = 3230 ML nm? sec™’
Q%27 = 25300 ML nm? sec™ Qiacei®®™ = 4950 ML nm? sec’ Qurop®®™ = 2890 ML nm?2 sec!
Law > A
Qpee®?®) = 16010 ML nm2 sec™ Qqrop®2® = 3230 ML nm? sec™’
Qppee®@™ = 4950 ML nm? sec™ Qg™ = 2890 ML nm? sec™’

Figure 3.20. Calculation of the amount of Ga atoms collected by the Ga droplet (in ML nm? sec)
depending on Lnw, in the case of a NW with ryw = 30 nm and a droplet with f=135°.

These results show the great difference in Ga atoms collected by the Ga droplet as a
function of o, in particular when the NW length becomes greater than As: 19240 ML nm? sec”
! with Ga(5) cell compared to 7840 ML nm? sec* with Ga(7) cell.

This difference may not be negligible if we compare the amount of collected Ga atoms
with the amount of Ga atoms which are involved in the growth of the GaAs NWs and which
contribute to the emptying of the Ga droplets.

If we consider a NW with rynw = 30 nm with a typical axial growth rate of 1.9 nm/sec
(measured in Regime 1) corresponding to about 6.7 ML/sec, the amount of Ga lost by the
droplet Quost corresponds to:

Qiost = 6.7 ML sec™! - 7302 nm? = 18940 ML nm? sec™?

When we compare this value with those of Qcapt®® and Qcapt®), it is thus clear that once
Lnw > As, i.e. when there is no more Ga atom supply from Squp, there will be a deficit of Ga
atoms for Ga(7)As NW droplets, whereas the amount of collected Ga atoms is enough for
supplying the Ga droplet in the case of Ga(5)As NWs (cf. Figure 3.21).
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Figure 3.21. Quantity of Ga atoms captured per sec by the NWs as a function of their length for Ga(5)
(red) and Ga(7) (blue) source. The green dashed line corresponds to the amount of Ga atoms lost by
the droplet per sec during the NW growth.

Therefore, sources with a proper a (like Ga(5)) will be capable to supply enough Ga atoms
to the NW droplet, whereas others (like Ga(7)) will not. In the latter case, the Ga droplet at
the top of the NW will gradually decrease its volume, reducing progressively its contact angle
(which explains why the droplets cannot be easily seen on Ga(7)As NWs grown for long
times) and eventually disappearing, with the passage from a VLS to a VS growth regime.

This fact can explain not only the differences observed in terms of both length (cf.
numerical simulations in Paragraph 3.4.4) and morphology between Ga(5)As and Ga(7)As
NWs, but also those in diameter. In fact, if the quantity of Ga atoms provided to the droplet
is larger than that one consumed, the Ga droplets will increase its volume, and so will the
NW diameter.14°

These considerations allows us to compute the minimum value needed to prevent the
droplet consumption, in an operation of droplet engineering which can be adapted from
case to case so as to potentially achieve better control on the NW size and morphology.

3.4.4 Numerical simulations

With a refinement of this semi-empirical model which takes into account the time-
dependent shape and size of the droplet, numerical simulations were carried out in our
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group by A. Danescu so as to evaluate the axial growth rate of the NWs as a function of Ga
flux incidence angle o and therefore of the droplet volume and shape. It is now a matter of
considering the capability of a Ga droplet to capture As atoms by direct impingement from
the As flux. The objective of these numerical simulations is to evaluate, depending on «a, the
length of the NWs as a function of the growth time and to compare these values with the
experimental results.

The implemented algorithm is based on a time-incremental procedure that:

1. Computes the amount of Ga atoms feeding the droplet either by direct impingement
of the Ga-flux on the droplet surface or by adatom diffusion on the substrate and on the NW
facets. This computation involves the geometry of the droplet and of the NW, the values of
external fluxes and the diffusion lengths of Ga adatoms on the substrate and on the NW
facets.

2. Computes the amount of As atoms feeding the droplet by direct flux.

3.  Computes the fraction of Ga and As atoms available for the NW growth using the
droplet geometry and the critical value of the As concentration in the droplet.

4. Updates on the NW length, droplet radius and contact (or wetting) angle.

The model is developed considering a constant NW radius and (like the one of
Tchernycheva et al**®) does not consider atom desorption.

The inputs for the algorithm are the initial values of the droplet radius (e.g. 30 nm), NW
length (e.g. 10 nm), Ga and As fluxes of standard growth conditions, diffusion lengths (e.g.
Avw = 1 um on the NW facets and As = 100 nm on the substrate, i.e. in good agreement with
the values reported in the literature.!36156-158) and the critical As concentration in the
droplet (e.g. 2.6 %). Note that, in a first approximation, the NW radius was considered
constant and equal to 30 nm all along the growth. The numerical procedure predicts the
evolutions with the growth time of the droplet radius and wetting angle, the capture
surfaces for Ga and As atoms, to which we hypothesize the amount of Ga and As atoms
which can be involved in the NW growth process is proportional, the As concentration in the
droplet before the nucleation leading to the NW axial growth, and finally the NW length.
Note that the capture surface for Ga atoms is the one which was calculated in the
preliminary model presented in the previous section, but here it is obtained by taking into
account the evolution of the droplet volume and shape during the NW growth (cf. Figure
3.22(f) below). Further details about the main concept of these calculations are reported in
Annex 2.
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Figure 3.22. Simulation results (continuous blue curves) obtained for Ga(5) source, by using diffusion
lengths A+ = 918 nm and As = 100 nm, (At = 0.5 sec and 9600 time steps). Evolution with growth time
of: (a) droplet radius, (b) droplet contact (or wetting) angle, (c) NW length; the red circles correspond
to the experimental points from Figure 3.13, (d) As concentration in the droplet before condensation,
(e) droplet capture surface for As atoms and (f) capture surfaces for Ga atoms by diffusion on the
substrate and on the NW facets (top curve), and by direct impingement on the droplet surface
(bottom curve).

The results of the numerical simulations (with A+ = 918 nm, see below why) are shown in
Figure 3.22. From these results, it seems that the droplet evolves at growth time = 8 min
from a first regime, that we named “transitory regime”, Rt, where all the droplet parameters
change, towards a second one, named “stationary regime”, Rs, with an asymptotic trend of
the droplet parameters towards constants values, which are, as expected, dependent on the
initial data. In this regime, the system parameters are such that an exact balance between
the amount of Ga and As atoms feeding the droplet is achieved. It is interesting to mention
that this stationary regime is "attractive", which means that slight variations of the
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parameters still drive the system towards it. Similar results have already been obtained by
simple models developed by Dubrovskii et al.>® Concerning now the evolution of the NW
length with growth time (Figure 3.22(c)), the simulation (blue line) displays two different
growth regimes R1 and R2, with a regime transition at about 15 min (corresponding to NW
length of about 1.8 um). These two regimes are not observed on the curve obtained from
the experimental points (red circles), where only one linear regime is observed.

It can be mentioned that in order to determine the slope of the Ga(5)As NW length
evolution with the growth time in this stationary regime Rs, theoretical estimations lead to a
value of the diffusion length of Ga adatoms on NW facets, As = 918 nm. The evolutions of the
droplet parameters and of the NW length were thus calculated assuming A+ = 918 nm and As
= 100 nm (Figure 3.22). With these material parameters, even if the axial growth rate is
correct in the R2 regime (cf. Figure 3.22(c)), we can observe that the values of the NW length
in this regime are too high.

In order to improve the fitting and to achieve a higher correlation, simulations show that
it is necessary to decrease the value of As to 65 nm. In this case, it is possible to fit
remarkably well the evolution of the NW length using the Ga(5) source, with a curve
corresponding to a large linear regime (Figure 3.23(c)). The observation of only one regime,
for experimental results (cf. Figure 3.13) and for simulation results, must be understood as
being due to an equivalent axial growth rate slope for the R1 and R2 regimes. We remind the
reader that, from the experimental curves (Figure 3.13), the axial growth rate for Ga(5)As
NWs is always 1.9 nm/sec (= 7 ML/sec) whatever the NW length, whereas for Ga(7)As NWs it
decreases to 0.83 nm/sec (= 3 ML/sec) after the transition from R1 to R2 regime
corresponding to NW length of = 1.8 um.
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Figure 3.23. With As = 65 nm, the experimental points from Figure 3.13 (red circle in (c)) for Ga(5)
source are well fitted by the simulation results.

Using now the same material parameters, Axw = 918 nm and As = 65 nm, with the Ga(7)
source, the system evolution with the growth time is predicted as illustrated in Figure 3.24.
For the NW length evolution (Figure 3.24(c) two regimes are highlighted with a transition
from R1 to R2 at about 17 min (corresponding to NW length of about 1.5 um), i.e. at a
growth time equivalent to what it is observed on the experimental curve. However, while
the main qualitative features of the experimental data are reproduced, it can be noticed
that: 1- simulations lead to a critical NW length of = 1.5 um for the R1-R2 regime transition
while experimental curve leads to a critical NW length of = 1.8 um, and 2- the NW length
predicted in the stationary regime is lower than that one observed in the experiments. This
shows that the model lacks some of the physical phenomena involved in the growth process,
in particular the initial values of the droplet and NW radius, and the radius increase of the
NW with growth time (cf. Figure 3.16(b)). Moreover, the asymptotic value of the wetting
angle obtained in the numerical simulations for the NW growth with the Ga(5) source (Figure

81



3.23) is larger than commonly reported values. This is of course, a straightforward
consequence of the assumption that the NW radius is constant.

a) 50 : _ : b) 160 s - -
= 45 5 : : 2 S : :
£ g
@ 40 o
= =
& 35 g
30 i
40
Time (min)
c) - B T T T d)I].EBB T
= [ : : |
e &l | E : : S 0034}t e AT A 4
g 4 [ i A e = (I
= 11 : 5 0032 L l.... ........
2ok TS o Iy T ]l e : : :
e __L) = S 003ftee AU o Feoreeeeeened
% 1] : : . :
0 . . : 0.028 . : -
0 20 40 60 80 1] 20 40 60 80
Timne (min) Time (min)
4
10
E) 5000 — , f) 4—
E : ‘E Fhooo 4
£ Booo e e P £
@ . N : [+ 1}
Q 5 f i S R S .
E 4000 KE-- -t ............. R 4 § :
" : it Ll SRR P R S T TP S RSt PPV S TS T T
< - - © . :
2000 y y 0 : :
40 60 80 40 60 80
Tirne (rin) Time (min)

Figure 3.24. Simulation results (blue line) obtained for Ga(7) source, by using As=918 nm and As = 65
nm. In (c), comparison of the NW length evolution with time and comparison with the experimental
data (red circles).

A modified version of the model which accounts for all these considerations, as well as for
the limitation of the wetting angle, leads to the results shown in Figure 3.25.
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Figure 3.25. Numerical results (blue lines) obtained with the semi-empirical model for Ga(5) and
Ga(7) sources. On the first line: the amount of Ga atoms supplying the droplet (in blue) and the
amount of Ga atoms from the liquid droplet used for the NW growth (red), as a function of the
growth time. On the next lines: droplet radius, wetting angle, the As/Ga atom ratio supplying the
droplet, NW length (computed-blue; experimental-red) and the NW radius (computed-blue;
experimental-red). Numerical parameters are identified by fitting only the Ga(5) experimental data
(left column). Using the same model parameters, but for the Ga(7) source, we have obtained the
numerical results (blue lines) in the right column, plotted together with the experimental data (red
points and error bars).
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Ultimately, we can state that our experimental results and their accordance with the
simulations confirm the importance of the Ga flux incidence angle a in the self-assisted
growth of GaAs NWs, as already claimed by other authors but not yet demonstrated with
systematic experiments. Our model permits to link the evolution of the NW length during
the growth with a by considering the Ga droplet feeding and, consequently, its changes of
both volume and shape. In an indirect way, these play a significant influence on the capture
surface of As atoms and, therefore, on the NW axial growth rate. In particular, we noticed
that in the case of Ga(7), with a small incidence angle a, the balance of all Ga droplet supply
mechanisms, and thus on its As atom capture surface, implies a critical length of about 1.8
um (experimental value). Above this value, the droplet is no longer sufficiently supplied and
stabilize to a smaller droplet radius of 30 nm (from simulation in Figure 3.24(a)) compared to
the stabilized droplet radius of 50 nm (from simulation in Figure 3.23(a)) obtained with the
Ga(5) source. The droplet features predicted by the simulations in the stationary regime are
reported in Figure 3.26(a, b) for Ga(5) and Ga(7), respectively. In fact, we should notice that
droplets with such shapes are correctly predicted by the results of the simulations on
corresponding samples (Figure 3.26(c, d)).

Figure 3.26. Schematics of the droplet shape and size in the stationary regime as predicted by the
simulations for NWs with 30 nm radius in the case of: (a) Ga(5) and (b) Ga(7) sources. SEM images
(45°-tilted) of corresponding: (c) Ga(5)As NWs and (d) Ga(7)As NWs; the white scale bars correspond
to 500 nm.

This fact originates a second growth regime for Ga(7)As NWs longer than a critical length
of about 1.8 um, in which the growth mechanism is still VLS, but where the droplets tend to
shrink, thus determining a capture surface for As and thus an axial growth rate which are
lower than that one for their Ga(5)As counterparts.

Moreover, by observing the curves in Figure 3.23(d) and 3.24(d), it can be noticed that
once in the stationary regime the As concentration in the droplet is slightly lower for Ga(5)
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(2.8 %) than for Ga(7) (3.2 %). This fact suggests that the key parameter to determine the
axial growth rate is not only the As concentration in the droplets but rather the overall
amount of As atoms inside them. Considering that such a value is proportional to the
capture surface of As atoms, which is equal to 8000 nm? for Ga(5) droplets (Figure 3.23(e))
and to 2400 nm? for Ga(7) droplets (Figure 3.24(e)), it follows the amount of As in the
droplets, and consequently the NW axial growth rate, will be much higher in the former
case.

3.4.5 Marker technique

Although improvements can still be made, especially to explain the results obtained with
Ga(7)As NWs, the model proposed by our group seems already consistent with the results
obtained in the series of Ga(5)As and Ga(7)As NWs. In order to study in detail the impact of
o on the NW axial growth rate, we decided to investigate the growth kinetic of the GaAs NW
with a marker technique, as previously reported by Galopin et al*>? and Ramdani et al.»>3 The
objective was to grow alternating sequences of Ga(5)As and Ga(7)As segments in the same
NW, so as to be able to compare the effect of the incident angle on the axial growth rate of
NW segments having the same diameter. To this end, thin AlxGai-xAs markers were inserted
periodically during the growth to delimit the different Ga(5)As and Ga(7)As segments, whose
length was then evaluated by fine TEM measurements (Figure 3.27). Unless otherwise
specified, all TEM measurements reported in this paragraph were recorded with zone axis
[11-2] for detecting the compositional contrast.

Figure 3.27: TEM image of a GaAs NWs with Al ¢sGa osAs markers (yellow arrows). These permit to
measure the length of each segment as a function of its growth time. TEM imaging by G. Patriarche
at C2N.
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The HR-TEM image in Figure 3.27 shows that the employ of AlpsGaopsAs markers is an
effective method to distinguish the different segments. As a consequence, it is possible to
measure accurately the length of each of them and to plot it as a function of their growth
time.

The first growths in sequence were realised when not all the aspects and implications of
our models had already been clarified, therefore it has proven necessary to prepare several
samples so as to achieve the optimal growth conditions for our purposes. After a first sample
of non-adapted sequences, a second one was realised as following: a Ga(5)As stem was
grown for 20 min in standard conditions, then a first sequence of Ga(5)As segments grown
for different times, and separated by Alo25Gao.7sAs markers (1 sec growth time), was
inserted. The sequence consisted in double segments deposited for 10, 15, 25, 35, 45 and 55
sec. Subsequently, a buffer segment of Ga(7)As was grown for 3 min before inserting a
similar sequence of Ga(7)As segments. The growth was finally concluded with a final
sequence consisting of two segments of Ga(5)As and Ga(7)As for 25 sec growth. A schematic
of the structure is shown in the following Figure 3.28.

o
| Final | Final sequence
sequence - N ® G-
E Ga(7)As - — 55 sec Ga(5)As x2 GaiS)As 2 sec
Buffer . | Ga(5)As 25 sec
segment| || 7 1
9 i Ga(5)As 1 min
g Ga(5)As — 45 sec Ga(5)As x2 Ga(d || Ga(7)As 25 sec
| B Ga(7)As
Ga(5)As - 35 sec Ga(5)As x2 )
stem .
(=2 ym) |
— 25 sec Ga(5)As x2
}— 15 sec Ga(5)As x2
JL 10 sec Ga(5)As x2

Figure 3.28. Schematics of the NWs grown with a Ga(5)As stem of 2 um, a sequence of Ga(5)As
segments, a sequence of Ga(7)As segments and a final sequence with Ga(7)As and Ga(5)As segments
of 25 sec growth time each. The blue lines correspond to the Alg2sGagzsAs markers inserted to
delimit each segment.
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Observing the SEM and TEM images of this sample (Figure 3.29), it is possible to notice
that the NWs show a reduced diameter on their tips or a reduced wetting angle of the
droplet (cf. respectively yellow and red arrows in Figure 3.29(a)). From the TEM image in
Figure 3.29(c), it is possible to see that this evolution occurs during the Ga(7) sequence and
can thus be attributable to the partial consumption of the Ga droplet. Indeed, with the
exposition to the Ga(7) flux, the droplet is not supplied enough with Ga, and for this reason
it either reduces the diameter of the NW maintaining a similar wetting angle, or preserves
the NW diameter while reducing the wetting angle.

' 4
{’ n Ga(7)As sequence /‘
\ Ga5 »> Ga7 \{ ’

Ga(5)As sequence

”

Figure 3.29. SEM images of NWs with alternate sequences of Ga(5)As and Ga(7)As segments (a, b).
The yellow arrow in (a) shows a NW on which the diameter reduced while the contact angle of the
droplet kept constant. The red arrow on the contrary shows the case of a NW with a constant
diameter and a decreased wetting angle of the droplet. The white scale bars corresponds to (a) 1 um
and (b) 500 nm. (c) TEM image of one of this NWs: the stem, Ga(5) and Ga(7) sequences are
reported.

Due to the long stem, it must be noticed that all sequences are situated above the critical
length of 1.8 um, beyond which the growth is in the R2 regime for Ga(7)As NWs. While the
Ga(5) sequence is naturally not affected by this, the Ga(7) one might undergo a decrease in
droplet volume and shape. Moreover, this decrease may be further enhanced by the fact
that the addition of Al to realize the markers may have a detrimental effect on the droplet
Ga alimentation, possibly causing the diffusion length of Ga adatoms to decrease (cf. our
hypothesis in Chapter 4, Paragraph 4.2). This seems confirmed by the fact that the first
Alp2sGao7sAs marker of the Ga(7)As sequence coincides with the beginning of the NW
diameter decreasing (cf. Figure 3.30(c) below). As a consequence, NWs may show diameter
shrinkage rather than diminution of droplet wetting angle at constant diameter. In this case,
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it will not be possible to make a reliable comparison between the two sequences, having
failed the aimed condition of a constant diameter.

‘q

Ga(7)As 25;‘
sequence 5~
15 ™

10”

10" %%
5

Ga(5)As sequence

Ga(5)As sequence Dyw =67 nm

Dyw =67 nm

M

Figure 3.30. TEM images highlighting: (a, b) the Ga(5) sequence and (c) the Ga(7) sequence in the NW
already illustrated in Figure D(c). The white scale bars correspond to 100 nm.

However, on those NWs where the Ga(7) sequence was (totally or partially) preserved
from the droplet shrinkage, it is on the contrary possible to perform a comparison. This is the
case of the NW reported in Figure 3.31, where shrinkage occurred only from the 45 sec
Ga(7)As segment, so that it was possible to compare at least the first segments with their
Ga(5)As counterparts.

e >S_équenceGa?‘ \‘ b)
»

Ga5 - Ga7

Ga(5)As sequence
Ga(7)As sequence

Figure 3.31. TEM images highlighting: (a) the analysed NW, (b) the Ga(5) sequence and (c) the Ga(7)
sequence in the NW. In the latter case insertions up to 35 sec were not affected by droplet shrinkage.

The white scale bars correspond to 100 nm.
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Therefore, it was possible to obtain a first comparison of the axial growth rate through
the graphic in Figure 3.32(a) for a NW with diameter equal to 88 nm, which displays the
length of the segments as a function of their growth time. As expected, the axial growth rate
is linear for both cases and much higher for the Ga(5) sequence than for the Ga(7) one. This
is consistent with what is observed in Figure 3.13, the sequences being performed in a NW
length greater than 1.8 um, i.e. when the VLS growth had already passed to the R2 regime
for Ga(7)As NWs.

Also, we reported on Figure 3.32(a) the evolution of the Ga(5)As segment length
measured on NWs having different diameters. The evolution of the length of 35-sec Ga(5)As
segments as a function of the NW diameter is reported in Figure 3.32(b). It can be observed
that the trend for the axial growth rate is increasing with the NW diameter, and therefore
with the droplet volume.
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Figure 3.32: (a) Graphic reporting the length of Ga(5)As and Ga(7)As segments (grown above the
critical length of 1.8 um) as a function of their growth time. For Ga(5) sequence, the measurements
were made on NWs with different diameters. (b) Graphic reporting the length of Ga(5)As segments
grown for 35 sec from different NWs as a function of the NW diameter.

In order to realise sequences before the R2 regime for Ga(7)As growth, we firstly decided
to reduce the stem length to 1.2 um, and secondly to alternate the insertion of single
Ga(5)As and Ga(7)As segments in the growing NWs, so as to prevent the accumulation of the
effect of droplet shrinkage induced by the Ga(7) source and obtain an as-new Ga/GaAs
interface at every source switch. Therefore, the NWs were grown as following: after 8 min
growth of a Ga(5)As stem, alternated segments of Ga(5)As and Ga(7)As were grown for
growth times of 10, 15, 25, 35, 45 and 55 sec. Each segment was delimited with AlosGao.sAs
markers grown for 1 sec, and every segment was preceded by 30 sec growth of GaAs with
the same source, so as to buffer the transient on the Ga fluxes caused by the cell closing and
opening. The growth was concluded with a 2 min growth of Ga(5)As. A schematic of the
structure is shown in Figure 3.33.
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2 min Ga(5)As

SEQUENCE

Ga(5)As/Ga(7)s 7| [
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; ) Ga(5)As buffer segment - 30 sec
1. Ga(7)As - 10 sec
o H Ga(5)As buffer segment - 30 sec
Ga(5)As - Ga(5)As - 10 sec
stem
(1.2 pm)

Figure 3.33: Schematics of the NWs grown with stem of 1.2 um and alternated segments of Ga(5)As
and Ga(7)As.

Ga(7)As 55"

Ga(5)As 35" »Ga5-Gav switch
»Ga5-Gav switch

Ga(7)As buffer Ga(7)As buffer

Ga(7)As 10 Ga(7)As 35"

Ga(5)As buffer

Ga5-Ga7 switch
Ga(5)As 15"

Figure 3.34. (a) TEM image of a GaAs NW showing the position of the sequence with alternated
segments of Ga(5)As and Ga(7)As. (b) HR-TEM image of some Ga(5)As and Ga(7)As segments: the
AlpsGagsAs markers delimiting each segment can be observed. The moments of the Ga flux switches
are also indicated. The white scale bars correspond to (a) 500 and (b) 50 nm, respectively.
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From the measurements realised on the NW shown in Figure 3.34, which can be
considered as an exemplificative case, the length of the Ga(5)As and Ga(7)As segments can
be reported as a function of their growth time (Figure 3.35(a)). It can be observed, once
again, that the growth for Ga(5)As segments is faster than for Ga(7)As ones.
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Figure 3.35. (a) Graphic reporting the length of Ga(5)As (black) and Ga(7)As (red) insertions in a single
NW as function of the deposition time. (b) Growth rate of Ga(5)As (black) and Ga(7)As (red)
segments as a function of their deposition time.

The axial growth rate is linear for all Ga(5)As segments, but only for the first points the
Ga(7)As ones. Moreover, it is a little different and equal to 3.1 and 2.6 nm/sec, for Ga(5)As
and Ga(7)As segments, respectively, considering only the first three points for Ga(7)As
segments (Figure 3.35(b)). This can be explained considering that, although the sequences
were started before achieving the critical length of 1.8 um with Ga(7) source, they were
realised when Lyw had already exceeded As = 1 um, i.e. in this particular moment at the
beginning of the stationary regime (corresponding more or less to growth times of 12-25
min) when the decrease in droplet radius with the Ga(7) source is much higher than that
with the Ga(5) one (cf. the slopes of the curves in Figure 3.24(a) and 3.23(a), respectively). As
a consequence, the lower axial growth rate for Ga(7)As segments during this phase must be
already due to this strong reduction of the droplet size. However, the little difference
between the growth rates of Ga(5)As and Ga(7)As segments is detectable only with the
marker technique in the case of segments grown in a NW with a constant diameter, whereas
it is not observable in Figure 3.5 since it tends to disappear into the error margins of the
experimental points.

TEM and HR-TEM images of a similar NW in length to that shown in Figure 3.34, were
recorded with [1-10] zone axis (Figure 3.36). We observed that the NW stem and tip are
pure, low-defected ZB, as expected with the growth conditions used, and that a high-volume
droplet is present: these fact are consistent with the employ of Ga(5) as a source, which
prevents the reduction of the droplet volume and of the wetting angle and, thus, favours the
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ZB phase. However, between the stem and the NW tip, it can be seen faulted zones where a
Wz phase can be identified in their center (marked with red crosses in Figure 3.36(a)).
Because of the lack of a corresponding image from [11-2] zone axis, it is hard to associate
such segments with a composition. However, given their number, their position, their
increasing length and periodicity, we strongly believe that they correspond to the Ga(7)As

segment positions. Such hypothesis is consistent with the fact that a reduction of the
wetting angle caused by a lower Ga supply to the droplet with the Ga(7) source would tend
to the formation of the Wz phase, as already predicted and observed.34137-139

Figure 3.36. (a) TEM and (b-e) HR-TEM images of a similar NW like that one analysed in Figure 3.34,
recorded with [1 -1 0] zone axis. (a) General view of the NW, with red crosses marking the faulted
zones, attributable to Ga(7)As segments. (b) NW tip with Ga droplet; the crystal structure is pure ZB,
(c, d) Highlights on a faulted zone with a Wz segment in the center. It can be identified as the 35 sec
Ga(7)As segment. (e) Highlight on the Ga(5)As stem, having also a pure ZB structure. The white scale
bars correspond to (a) 500, (b) 20, (c) 50, (d) 20 and (e) 10 nm.
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3.5 Conclusion

In conclusion, from experimental and simulation results, it is demonstrated that the Ga
flux incidence angle a has a strong influence on the amount of Ga atoms which can be
captured by the droplets, leading to different droplet volumes, shapes and surfaces. It is also
shown that the surface diffusion of Ga adatoms on Si substrates covered with a thin epi-
ready oxide layer (1-2 nm-thick) has an important influence on the self-assisted growth of
GaAs NWs, whereas Ga adatoms behave differently on patterned Si substrates covered with
thicker SiO, masks (10-20 nm-thick), as firstly remarked by Krogstrup et al*3® and confirmed
by Oeheler et al'®?, as well as by our results (cf. Chapter 5). Indeed, when the supply of Ga
adatoms from the diffusion on the epi-ready Si substrate stops (i.e. the NW length becomes
greater than As), it becomes possible to see a significant difference between the Ga(5) and
Ga(7) cases, due to a smaller capture surface of Ga atoms by the NW facets for the Ga(7)As
NWs compared to the Ga(5)As ones. Finally, it is also shown that the droplet volume and
shape are one of the most important parameters for the self-assisted growth of GaAs NWs
due to their influence on the As atom capture surface and thus on the amount of As atoms in
the droplet, on which the axial growth rate depends.
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4 The failure of AlGaAs axial growth and the synthesis of
core/shell nanowires as a viable alternative

4.1 Introduction

In this chapter we report the results observed in the growth and characterization of NWs
which were expected to constitute the building blocks of our TSC. Given the complexity, time
and economic costs related to the fabrication of patterned substrates, we decided to
developed good NW architectures with well-performing PV active regions on cheaper and
more easily available substrates at first, before transferring the know-how on patterned
substrates once acquired. For such a reason, these preliminary studies about the NW
architecture were undertaken on epi-ready Si(111) substrates. All samples fabricated for
these studies were grown on p-doped Si(111) substrates with a doping level in the 5-10%7-
2.5-10'8 cm3 range.

According to the guiding principle of our work, this chapter can be divided into three main
parts: the first concerning the attempts of growing AlGaAs NWs and their failures, the
second regarding the growth of core/shell GaAs/AlGaAs NWs as a possible solution to
overcome these failures, and the third one about the identification of a suitable material for
the passivation shell.

4.2 The attempts to obtain AlGaAs axial growth

At the very beginning of HETONAN project we aimed to develop a top-cell constituted of
Alo2GaosAs NWs, so as to provide the optimal band-gap of 1.7 eV to this sub-unit: in
particular, we conceived the NWs as structures constituted of a Be-doped Alp.2GaosAs core
with intrinsic and Si-doped shells, thus obtaining a device based on radial p-i-n junctions.
This fact implied the development of the Ga-assisted axial growth of Alp2GapsAs NWs, a task
that immediately appeared arduous to accomplish, as suggested by the lack of bibliographic
references. As a matter of fact, although the scientific literature reports some examples of
AlGaAs NWs grown by MOVPE®163 and some examples of insertion of short AlGaAs
segments in self-assisted GaAs NWs by MBE*3164 to the best of our knowledge there is not
any work attesting the Ga-assisted growth of AlGaAs NWs by MBE on Si substrates. The only
examples so-far achieved of AlGaAs NWs grown by MBE consist in four articles by Wu,%°
Chen'®%%7 gnd Barettin®, reporting the Au-assisted growth of such structures on GaAs
substrates. Despite these not very encouraging premises, we still thought it was worth trying
to obtain Ga-assisted axial growth of Alp2GaosAs NWs, and we started therefore a series of
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experiments to achieve this objective. In order to achieve a ternary alloy with the desired
composition, all growths were performed adopting equivalent fluxes of 0.13 ML/sec for Al
and of 0.5 ML/sec for Ga. The Ga source employed for all NW growths presented in this first
study was the cell Ga(7), having an incident angle o = 9.3° to the sample normal.

Firstly, we try to obtain Ga-assisted Alp.Gag.sAs NWs on epi-ready Si(111): with such a
purpose, we indeed pre-deposited 1 ML of Ga at 520 °C to form the droplets, then we
deposited the ternary alloys at 600 °C for 10 minutes. The V/IIl flux ratio (R(Fv/Fu) in the
following) adopted in this case was equal to 2.3 and 1.8 for GaAs and Alop2GaosAs,
respectively. This approach was totally unsuccessful, since all we could obtain was the
formation of a rough 2D layer of material with some 3D crystals, as shown in the following
Figure 4.1.

Figure 4.1. SEM image (45°-tilted) showing the failed attempt to obtain Alo2GagsAs NWs by
depositing all precursors at 600 °C after Ga pre-deposition at 520 °C to form the catalyst droplets.
The white scale bar corresponds to 500 nm.

Such a failure is attributable to the easy oxidation of Al adatoms in presence of silica,
since the value of AHg for the reaction

3Si02 +4 Al > 2 Al03 + 3 Si

is about -808 kJ/mol (as calculated from the enthalpies of formation at 900 K reported in
Reference®), thus making the Al oxidation favourable. This is confirmed by the XPS spectra
in Figure 4.2, obtained after the deposition at 600°C of 2 MLs of Al with Fa= 0.2 ML/s on an
epi-ready Si wafer with about a 2 nm-thick native oxide layer (the sample was transferred from
the MBE chamber to the XPS one in UHV). The Al2p core level main component is located at
75.7 eV, the Si2p core level at 99.4 eV being taken as binding-energy reference. This binding
energy is between the value of 76.95 eV given for Al,O3 and the one of 72.6 eV for metallic
Al,Y7° thus suggesting the presence of a non-stoichiometric alumina or an aluminosilicate on
the surface.

96



Concerning the Si2p signal, it can be noticed that the difference in energy between the peak
of the bulky silicon (at 99.4 eV) and that one of the oxide (at 103.6 eV) is equal to to 4.2 eV,
i.e. to the characteristic value for stoichiometric SiO,, and with a peak intensity
corresponding to a thickness estimated at 1-2 nm. Following Al deposition the oxide peak is
still located at 103.6 eV, meaning that the composition of SiO, has not changed, but its
intensity has become lower, thus denoting a thickness estimated at about 1 nm.
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Figure 4.2. XPS spectrum of Al2p and Si2p before (red curve) and after (black curve) the deposition of
Al (2 MLs) at 600°C on an epi-ready Si(111) substrate. The spectra were recorded at INL in
collaboration with C. Botella.

Regarding the growths performed exposing the substrate to both Ga and Al fluxes from
the very beginning, we tend therefore to think that the Al oxidation which can take place on
the SiO; surface could inhibit the formation of the Ga droplets needed for the nucleation of
the Ga-catalyzed NWs, thus leading to the deposition of bulk material as previously reported
in Figure 4.1. On the other hand, as far as the growths with GaAs seeds are concerned, we
might hypothesise that when the Al flux reaches the NW facets strongly lower the diffusion
coefficient of Ga adatoms, thus determining the progressive consumption of the droplets
and eventually leading to the suppression of the axial growth.

Based on these experimental evidences, we must conclude that all attempts to grow Ga-
assisted Alp.2GaosAs NWs on epi-ready Si proved to be unsuccessful. Since depositing both
Ill-group precursors at the same time did not lead to any axial growth, we decided to adopt a
different approach, i.e. to start the growth with GaAs only for a certain time before opening
the Al flux. In this case a first series of samples was realised with a Ga pre-deposition
temperature between 510 and 530 °C, and a growth temperature in the range of 590-600 °C.
R(Fv/Fi) adopted in this case was equal to 5.7 and 4.5 for GaAs and Alo.2Gao sAs, respectively,
and all samples were realised so as to obtain a total growth time equal to 10 min, which is to
say that the growth of GaAs NWs “seeds” for 30 sec, 1 and 3 min was followed by
Alp2GagsAs (nominal) growth for 9 min and 30 sec, 9 and 7 min, respectively. The results
concerning these samples are shown in Figure 4.3. It can be thus noticed that after 30 sec
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only of GaAs seed deposition no NWs are visible on the sample, which appears as a very
rough surface (Figure 4.3(a)). When GaAs seeds are deposited for 1 min, very short NWs
start to appear from the rough layer (Figure 4.3(b)), whereas a seeding time of 3 min
determines the presence of longer NWs, having density equal to = 10 /um?, length equal to
300 + 35 nm and diameter of 54 + 4 nm (Figure 4.3(c)). Based on these data, two
considerations can be expressed. Firstly, by observing Figure 4.3(b) and (c) it can be noticed
that the NWs do not have any visible Ga droplet on their tips, suggesting that Ga droplets
were totally consumed or at least significantly shrunken: this is a very important fact, since
the NWs were not exposed to As flux only after the growth to consume the droplets, thus
meaning that the droplet consumption occurred spontaneously during the NW growth.
Secondly, since shorter GaAs seeding times correspond to longer AlGaAs depositions for an
overall growth time of 10 min, the fact the NWs in Figure 4.3(c) may only appear longer than
those ones in Figure 4.3(b), is only due to the fact that in the latter case more bulk material
has been deposited around the NWs. As a consequence, we cannot exclude that the Ga
droplets were spontaneously consumed and the axial growth suppressed when Al was
introduced as precursor.

Figure 4.3. SEM images (45°-tilted) showing the growth of Aly,GagsAs (nominal) with GaAs seeds at
R(Fv/Fu) = 5.7 (4.5). (a) NWs grown with 30 sec GaAs seeding time. (b) NWs grown with 1 min GaAs
seeding time. (c) NWs grown with 3 min GaAs seeding time. The total growth time is equal to 10 min.
In every image the white scale bar corresponds to 500 nm.

In order to further investigate the possibility of using GaAs seeds, we decided to prepare
similar samples with lower As/Ga flux ratios and a higher GaAs seeding time. In this case, the
Ga pre-deposition temperature was 530 °C, the growth one in the range of 610-625 °C and
R(Fv/Fi) = 2.3 (1.8) or 1.4 (1.1). In any case, GaAs seeds were grown for 5 min, while the
Alp2GapsAs (nominal) growth was performed for 10 min. It can be noticed in Figure 4.4 that
the morphology of the structures depends on both V/III flux ratio and growth temperature.
As a matter of fact, R(Fv/Fu) = 2.3 and Tgrowth = 610°C lead to longer NWs, as shown in Figure
4.4(a), with L = 700 = 200 nm and D = 67 + 8 nm (d = 0.9 /um?), whereas a higher Tgrowth =
625°C originates shorter NWs with L = 500 + 100 nm and D = 72 + 8 nm (d = 2.0 /um?), as
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reported in Figure 4.4(b). This length decrease is probably due to the Tgowth increase which
enhances the desorption of As thus reducing the axial growth rate. The same tendency, but
amplified, is observed for R(Fv/Fu) = 1.4 (Figure 4.4 (c)-(d)). In all cases no Ga droplets are
present at the NW tips. Such results demonstrate that lowering the As/Ga flux ratio did not
prevent spontaneous consumption of Ga droplets, thus suggesting that this phenomenon
occurs independently from the amount of Ga and As supplied, being rather attributable to
the introduction of Al flux into the NW growth.

Figure 4.4. SEM images (45°-tilted) showing the growth of Alg,GagsAs (nominal) with GaAs seeds at
different R(Fv/Fi) and Tgrowth (in yellow). In every image the white scale bar corresponds to 500 nm.

In order to investigate the structure and the chemical composition of such NWs grown
with 5 min of GaAs seeding (Figure 4.4(a)), we have performed a TEM analysis on them
(Figure 4.5). We observed that the droplets on the NW tips were completely or partially
consumed, showing in this case a contact angle below 90°, thus confirming what observed
by SEM. Moreover, the TEM analysis allowed collecting insights about the crystal structure
of the NWs: it is thus possible to recognise three different zones in most of the NWs, i.e. a
first ZB region (marked as L1 in Figure 4.5), a region many stacking faults leading to a ZB-WZ
mixed phase (L2), and a final region where the ZB phase re-appears. According to
Jacobsson’s model'38, this NW structure could suggest a structure evolution with the droplet
contact angle decrease when Al is added in the flux, as follow: the GaAs NWs start with a ZB
phase (L1 region), as expected with the V/IIl flux ratio used, then stacking faults and WZ
phase are formed when the droplets consume with the Al addition, leading to a contact
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angle decreases below a critical value (L2 region), until the contact angle becomes too low
and ZB phase forms again (L3 region).

Figure 4.5. TEM image of NWs obtained with 5 min GaAs seeds and 10 min of Aly,GaosAs (nominal)
growth with R(Fy/Fu) = 2.3 and Tgrowth = 610 °C (NWs from sample shown in Figure 4.3(a)).

In order to determine the composition of the NWs, an EDX analysis was performed on
several NWs. The results shown in Figure 4.6 indicate that the ternary alloy has a very low Al
composition, equal to 4 % in the core (yellow circle) and 12 % in the shell (yellow square).
Such a result seems therefore to confirm a low diffusion of Al towards the Ga droplets,
which would explain the low Al % measured in the core of the NWs. The consumption of the
Ga droplet faster than usual also suggests that the Ga supply of this one is not optimal and
that the Ga diffusion on the NW facets is probably also lowered by the Al addition.

Figure 4.6. Al, Ga and As EDX maps for NWs obtained with 5 min GaAs seeds and 10 min of
Alo2GagsAs (nominal) growth with R(Fy/Fi) = 2.3 and Tgowth = 610 °C (NWs from sample shown in
Figure 4.3(a)). The yellow circle and square correspond respectively to the area of the core and the

shell where the composition was measured by EDX.
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4.3 The growth of core/shell NWs on epi-ready Si

The failure of all our attempts to grow Alp2GaosAs NWs on Si forced us to reconsider the
whole approach to the project. This approach, already exploited for other types of
applications (refs),}’1"17¢ consists in the growth of core/shell GaAs/AlGaAs NWs with a p-
doped GaAs core and Alp2GagsAs shells in which the p-i-n junction is introduced, and
protected by a “passivation” shell of higher band-gap material. A schematics of the tandem
solar cell that is targeted is reported in the Figure 4.7.

p-GaAs
i-GaAs
p-Aly ,Ga, gAs

Encapsulation
layer

n'AlolzGaolsAs

BSF Si p+
Al back contact
Figure 4.7. Schematics of the target structure of the tandem solar cell, in which the radial p-i-n
junction is inserted in the Alo2Gao sAs shell grown around the p-GaAs core of the NW top-cells.

As a consequence of this new approach, part of the work of this thesis was devoted to the
development of the core/shell NWs. This can be summarized in a first study concerning the
impact of the p-doping level on the NW core morphology, the consumption of the Ga
droplets and the growth and characterization of p-GaAs core/n-GaAs shell NWs as a
reference NW structure (a work reported in Reference!’”). The Ga source employed for this
first study was the cell Ga(7) with o = 9.3°. Then, a second study concerning the growth and
characterization of p-GaAs core/Alp2GaosAs shell NWs with p-i-n junction inside Alp2Gao.sAs
(a work reported in Reference!’®. The Ga source employed for this second study was the cell
Ga(5) with o = 27.9°.
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4.3.1 Influence of p-doping on the NW core morphology

According the configuration we chose for our core/shell NWs, the GaAs core should be
positively doped with Be. However, this fact raises a problem, since it is well known that
excessive Be-doping of GaAs during the axial growth may heavily affect the morphology of
the NWs.27? In order to calibrate our dopant flux for preventing morphological defects, two
samples of p.n core/shell GaAs NWs were realised: after growing the Be-doped core for 20
min with the standard procedure and Fga = 0.5 ML/sec, Fas = 2.3 ML/sec (corresponding to
R(Fv/Fi) = 4.6), the Ga droplets were consumed under As flux (Fas = 2.3 ML/sec) for 4 min at
Tgrowth, and the samples were cooled to 460 °C under the same As flux. After that, the n-GaAs
shell was deposited for 23 min with the same Ga and As fluxes and a Si flux as dopant
corresponding to a nominal doping concentration (i.e. the doping level in 2D GaAs layers
grown with the same growth rate of 0.5 ML/sec) of 1.13-10'° cm3. This was followed by a 5
min n-Alo.2Gao sAs passivation shell, obtained with the same parameter plus a flux of Al equal
to 0.13 ML/sec, and by a final n-GaAs shell grown for 2 min. The growth conditions were the
same for both samples except for the Be flux employed to dope the core: a lightly doped one
corresponding to a nominal value of 5:10'® cm™, and a five times heavier one nominally
equal to 2.5-10%° cm3. Based on the data reported in the literature, the doping level in the p-
GaAs core is expected to be equivalent to the nominal value.’®'8 SEM images of the
samples are reported in Figure 4.8(a) and (b), respectively, It is clear that the variations in
doping level have a dramatic effect on the NW morphology. In the case of the heavily doped
one, the NWs appear as hockey-stick-shaped: such kind of effect was already observed by
Hilse et al'’® and Zhang et al,®® and explained as a consequence of a surface energy
imbalance caused by the increase in Be concentration inside the droplets. This effect
eventually modifies the surface energies causing the Ga droplet to displace from the NW tip
to its edge, thus originating this morphology.’® On the contrary, this does not happen with
5-10'8 cm3 doping level, thus originating straight NWs.

Therefore, a p-core doping level of 5-10'® cm™ appears as a suitable value for our
purpose.

Figure 4.8. SEM images of p-n core/shell GaAs NWs with core p-dopant concentration of: (a) 5-10%8
cm3and (b) 2.5-10'° cm. The white scale bar corresponds to 500 nm.
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4.3.2 Consumption of the Ga droplet

When growing Ga-assisted core/shell NWs, an important part of the procedure consists in
the consumption of the Ga droplet after the core growth, performed by exposing the NWs to
a flux of As only. Since the shell growth process enhances the presence of morphological
defects on the top of the NWs, it is very important to develop a protocol of consumption
giving an appropriate shape to the NWs. In particular, when it comes to the synthesis of
core/shell NWs for PV applications, it is very important to identify a procedure which
determines NWs with well-shaped tips, ideally flat, so as to eventually achieve a better top
contact with ITO.°® Fur such a reason, we committed to obtaining NWs with a flat-tip
morphology and carried out a brief study of the Ga droplet consumption. This was
performed on two different samples, which underwent the same standard NW growth
procedure reported in chapter 3. After 10 min growth, the Ga flux was stopped and the
droplet consumption was effected in both cases by exposing the specimens to Fas = 4.05
ML/sec for 4 min, with the only difference that on the first sample (Figure 4.9(a)) it was
performed at the same temperature employed during the NW growth (Tgrowth = 600°C),
whereas on the second one (Figure 4.9(b)) it was carried out after stopping the heating so as
to let the sample cool down quickly (the temperature dropping to about 350 °C). As shown in
Figure 4.9, it can be noticed that the difference in treatment leads to different morphologies
of the NW tips. In particular, the NWs whose droplets were consumed at Tgrowth tend to
present either a rounded tip or a tapered bottle-necked one. On the contrary, the NWs in
which the droplet consumption was carried out while cooling the sample appear as much
flatter on their top. These procedures permits therefore to control the shape of the NW tip,
a useful tool especially when it comes to the growth of core/shell NWs, which allows to
obtain either conical (Figure 4.9 (c)) or flat shaped tip (Figure 4.9(d)), as shown more in detail
in Paragraph 4.3.3 and 4.3.4.
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Figure 4.9. SEM images of GaAs NWs grown for 10 min with the standard procedure. The Ga droplets
were consumed: (a) at Tgown and (b) while cooling fast. The white scale bars correspond to 500 nm.
Bright field TEM image of (c) a p-GaAs/p-GaAs core/shell NW whose droplet was consumed at Tgrowtn
and (d) a p-GaAs/p.i.n.-Alp,GaosAs core/shell NW whose droplet was consumed by dropping the
temperature to 350 °C. These two images come from the sample reported in Paragraph 4.3.3 and
4.3.4, respectively.

As a consequence, the Ga droplet consumption treatment performed with Fas = 4.05
ML/sec and fast decreasing temperature appears as the most suitable to realise core/shell
NWs for the development of our TSC.

4.3.3 p-njunction in core/shell GaAs NWs: growth and characterization

As above-mentioned, the new design of the PV device requires a radial p-n junction in
Alp2Gao.sAs shells grown on a p-GaAs core. However, in order to proceed step by step in the
research and to provide a comparison, we committed to introducing the radial p-n junction
in GaAs NWs before continuing with AlGaAs-based shell NWs.
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4.3.3.1 Growth of the p-n core/shell GaAs NWs

Many samples were realised with this radial p-n GaAs NW configuration. We remind the
reader that the Ga source employed in this study was the cell Ga(7) with a = 9.3°. After pre-
depositing 1 ML of Ga at 520 °C at 0.5 ML/sec to form the droplets, the temperature was
increased to 610 °C at 7 °C/min. Subsequently, the sample was exposed to fluxes of Ga, As
and Be, so as to obtained p-doped GaAs NWs, which were grown for 10 min with As and Ga
fluxes corresponding to 2.85 and 0.5 ML/sec, respectively (R(Fv/Fu)= 5.7). In order to grow
the shells, the Ga droplets at the top of the NWs were then consumed by exposition to the
As flux only (without dopants), while decreasing the temperature to 460 °C (“cooling fast”
procedure). The radial p-n junction was obtained by growing a Si-doped GaAs shell around
the core at 460 °C for 10 min, still with R(Fy/Fu) = 5.7. The need for such a low shell growth
temperature (Tshen) and for such a relatively high R is due to the fact that Si is meant to n-
dope the GaAs NWs with {110} facets, a task which can be better performed minimizing the
amphoteric behaviour of Si by using Tshen below 490 °C and R(Fv/Fu) > 4.5, as reported by
Dimakis et al'®l. Subsequently, a second Si-doped shell of AlpsGao.sAs (nominal) was grown
for 10 min with R(Fyv/Fi) = 5.7 plus a nominal Al flux equal to 0.5 ML/sec (corresponding to a
R(Fv/Fi) = 2.85), as passivation shell in order to prevent carrier recombinations at the GaAs
surface of the PV-active region.'8? The growth was then concluded with a further thin GaAs
shell deposited for 3 min, so as to prevent the oxidation of AL!® Throughout all the
procedure, the sample was rotated at 3 rpm. As far as the dopants are concerned, the Be
and Si cell temperatures employed (760°C and 1020°C, respectively) corresponded to a
nominal doping concentration of 5-:10'8 cm™ and 1.13-10° cm3, respectively, for a 2D GaAs
layer growth rate equal to 0.5 ML/s.

Figure 4.10(a) illustrates a schematics of the as-obtained NWs, while an SEM image of the
NWs is reported in Figure 4.10(b): the NW density is equal to 6.6/um2), and the NWs have
good morphological properties, with lengths of 1.1 + 0.2 um and diameters of 85 + 5 nm.
Considering that the diameter of core-only NWs grown in the same conditions is equal to 40
*+ 3 nm, we can estimate the thicknesses of the n-GaAs, n-AlxGai1xAs and final n-GaAs shells
to be about 7 nm, 14 nm and 2 nm, respectively.
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Figure 4.10. a) Schematic of the p-n core/shell GaAs NW structure (profile deduced from the
following TEM observations). b) SEM image of the NWs (45°-tilted).

Concerning the doping level and as above-mentioned the p-core doping level can be
assumed equivalent to the nominal one and thus equal to 5 -10*8 cm3. Unlike the core case,
the doping level of the shell cannot be assumed equivalent to the nominal value, but should
be corrected by the actual growth rate and by tan a, with o = 28.9° for the Si cell, following
the equation:!8!

[Si] = [Si]planar(GRplanar/GRradial)(tan a/m)

The factor m takes into account the effect of the substrate rotation during the shell
growth, given that Si adatoms are considered immobile on the NW side-walls for the growth
temperatures used here.!8!

The shell growth rates (GRragial) can be calculated knowing the shell thickness and
deposition times and result equal to 0.04, 0.08 and 0.04 ML/sec for n-GaAs, n-AlyGai-xAs and
n-GaAs shell respectively. Taking into account tan o/, thus we have evaluated a n doping
level of 2.5 -10%° cm'3, 1.25 -10'° cm™ and 2.5 -10%° cm3, respectively.

4.3.3.2 Structural characterization

Figure 4.11 shows HAADF-STEM images of a typical NW whose length is equal to about
1.25 um and diameter to 90 nm. While imaging along [1-10] zone axis (Figure 4.11(a, b))
points out the crystal structure of the NW, showing the presence of defects and of different
phases, the micrographs taken with [11-2] zone axis (Figure 4.11(c,d)) denote the
compositional contrast in the structure. Therefore, by combining the information obtained
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with both type of images it is possible to recognize five different zones along the NW,
corresponding to as many different growth stages (Figure 4.11(d)): the first one (715 nm
long, marked with a red arrow) coincides with the VLS growth of the p-GaAs core and
presents a Zinc-Blende (ZB) structure with some stacking faults (twins). These are likely due
to the relatively high As/Ga flux ratio employed for growing the core. The succeeding zone
(210 nm long) is the sequence grown during the Ga droplet consumption, with a first ZB
segment with a high density of stacking faults, then a second segment with a Wurtzite (Wz)
structure, as already observed by other groups.133137.141184 Then it can be seen again three
highly stacking-faulted ZB zones formed at the tip of the NW during the radial growth of the
n-GaAs and n-AlpsGapsAs/n-GaAs shells, with lengths equal to 180, 95 and 27 nm,
respectively, which provide a substantial contribution to the overall length of the NW. We
can note that the shell thickness strongly depends on the plane orientation: as a matter of
fact, the thickness of the shells grown on the {111} top facets is bigger than the thickness
measured on the {110} lateral facets, since the latter ones are less exposed to the Ill element
flux.

Further information about the composition of the shells were collected by EDX analysis of
the NW as shown in Figure 4.11(e). In particular, the ternary alloy is revealed to have an
actual composition between Al0.52Gao.4sAs and Alp57Gao.43As depending on the zone, in any
case very close to the target value of AlpsGaogsAs. Finally, the HAADF-STEM image also gives
information about the thickness of the different shells. As measured from Figure 4.11(d)
inset, the Alo5GaosAs and GaAs passivation shells are 15 nm- and 1.8 nm-thick, respectively.
Considering that the growth rate for AlosGaosAs was twice the one adopted for n-GaAs, it is
therefore possible to assume that the thickness of the n-GaAs shell around the core is 7.5
nm. These values are very close to the ones expected from SEM estimation, and considering
that the overall diameter of the p-GaAs core plus the n-GaAs shell is 55 nm, they are also
consistent with the assumption of a p-GaAs core diameter of 40 nm.
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Figure 4.11. (a) HAADF-STEM image (with [1-10] zone axis) of a representative p-n core: shell GaAs
NW with AlysGaosAs/GaAs passivation shells: the crystal structure is clearly visible. (b) Higher
magnification of the previous image. (c) The same image taken with [11-2] zone axis: such
orientation highlights the compositional contrast. (d) HAADF-STEM image (with [11-2] zone axis) of
the whole NW. Inset: higher magnified image showing the thickness of AlpsGaosAs and GaAs final
shells, and the composition inhomogeneity in the AlssGagsAs shell caused by the presence of
stacking-faults. (e) EDX mapping of Al and Ga. Inset: the corresponding HAADF-STEM image (with
[11-2] zone axis); the scale bar corresponds to 50 nm.

4.3.3.3 Optical characterization

The optical characterization of p-n core/shell GaAs NWs was carried out by PL
spectroscopy. The analysis was performed at 13 K with a 532 nm continuous wave diode-
pumped solid-state laser (excitation power equal to 70 mW) and with a nitrogen cooled
silicon CCD detector coupled to a monochromator. The optical characterization of NWs
presented in this thesis has been realized by N. Chauvin at INL-INSA.
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The PL spectrum reported in Figure 4.12(a) presents two peaks: one at 1.37 eV,
attributable to GaAs, and one at 1.67 eV, originated from the AlosGaosAs shell. Two
hypothesis could explain the observation of the GaAs peak at 1.37 eV, i.e. 0.14 eV below the
usual band gap of undoped ZB GaAs at cryogenic temperature (1.51 eV).'® By comparing PL
spectra recorded using different excitation powers we can see a strong blue-shifted of the
low energy peak as the power is increased (Figure 4.12(b)). This behaviour is usually
interpreted as a signature of carrier separation or state filling. As a first hypothesis, the
emission is related to the p-doped GaAs core and to the ZB/Wz mixed structure (due to the
presence of stacking faults) of the NWs. The low energy emission would be the consequence
of the mixed structure and Be doping levels which can both induce potential fluctuations in
the GaAs material along and perpendicularly to the NW axis. To support this hypothesis, we
can mention that PL emission below 1.3 eV has already been reported for Si-doped GaAs
NWs where the amphoteric behaviour of the Si dopant increases the potential
fluctuations.'®® The second hypothesis is related to a band bending along the radial axis as a
consequence of the p-n GaAs junction. The electrons are localized at the n-doped
GaAs/AlosGagsAs interface whereas the holes are in the p-doped GaAs core. To support this
hypothesis, we can mention that such a band bending has already been observed for GaAs/
Alo.sGaosAs core-shell NWs even in the case of an undoped heterostructure.8’

In the case of the AlpsGaosAs peak, the PL emission is likely caused by donor-acceptor
transitions or localized states induced by compositional inhomogeneity inside the
AlosGaosAs shell as observed on the magnified TEM image with [11-2] zone axis (cf. inset of
Figure 4.11(d)), and as already mentioned by several groups.'88189
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Figure 4.12. (a) PL spectrum of p-n core/shell GaAs NWs with AlpsGaosAs/GaAs passivation shells at T
= 13 K, with an excitation power P =70 mW. (b) PL spectra at 13 K as a function of the excitation
power from 0.7 to 70 mW.
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4.3.3.4 EBIC characterization

In order to further characterize the optoelectronic properties of the NWs, and especially
their p-n junction as PV-active region, EBIC (Electron Beam Induced Current) measurements
were performed on 16 single NWs from different areas of the sample, so as to constitute a
statistical measure as representative as possible. EBIC measurements were carried out by V.
Piazza and M. Tchernycheva at C2N; cf. Annex 1 for the experimental set-up. The results
reported below are thus considered to be characteristic for the vast majority of the NW
population, being representative for 87 % of the investigated cases. Therefore, the following
results, even if based on individual cases rather than on arrays, are meant to be illustrative
for the standard properties of the NW population of this sample.

The following Figure 4.13 shows the results of |-V and EBIC characterizations of an
individual p-n core/shell GaAs NW contacted at its top by a nanomanipulator. It is possible to
observe that the I-V curves (Figure 4.13(a)) present diodic behaviour also without external
excitation, with opening voltage from 0.75 to 0.9 V and leakage current below the sensitivity
of the instrument in the voltage range. When expose to the electrons the NW originates a
current, detectable both under zero and reverse bias, of 0.54 pA (Figure 4.13(b)), which only
weakly depends on the reverse bias. In the forward regime on the contrary the |-V curve
shows Voc of 0.36 + 0.04 V, while its increased slope indicates a decrease of the series
resistance. Although this particular NW shows fill factor FF equal to 32 %, the average values
calculated on the statistically representative NW population is about 40 %.

Even if not representative of which could be the actual PV efficiency of these structures,
being obtained with e-beam and not by exposition to light, these results are still very
significant and positive, since they demonstrate that the p-n junctions are electrically active
and capable to separate the generated carriers.

Figure 4.13(c, d, e) reports scanning electron micrographs and the related EBIC maps
recorded with different external bias. With a negative bias (Figure 4.13(c)) the p-n junction
induces a significant negative current (black contrast), which is consistent with the I-V curve
in Figure 4.13(a). However, an induced current originated by the p-n junction is observable
also without bias (Figure 4.13(b)), although the signal-to-noise ratio is much lower in this
case, thus indicating the presence of a variable series resistance, e.g. due to the Schottky
contact between the NW and the manipulator tip. The effect of this Schottky junction is
more visible in Figure 4.13(e), where the signal from the NW disappears under forward bias,
displaying only a positive signal (white contrast) at the NW/tip interface.
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Figure 4.13. (a) I-V curves of a single NW in the dark (black) and under electron beam exposure (red):
the red letters indicate the bias conditions as adopted in the EBIC maps reported in (c), (d) and (e).
(b) Zoom on the origin of the |-V curve showing the interpolation of the experimental data acquired
under electron irradiation. (c), (d), (e) SEM images and corresponding EBIC maps at Vpias= -1.5, 0 and

+1.5V, respectively.

The generated current and its homogeneity or inhomogeneity along the NW length can
be illustrated through EBIC profiling, as reported in Figure 4.14. This permits to identify three
regions corresponding to three different regimes. In the top one (Region |), the collected
current increases towards the NW base indicating a diffusive transport regime, which is
consistent with the presence of an axial p-n junction formed due to the shell coverage of the
NW top.

As far as Region Il is concerned, which presents a mixed diffusion and drift transport, the
EBIC profile shows that carriers can be efficiently collected also here despite the high density
of stacking faults observed by TEM. This implying the absence of significant carrier losses,
and considering the thickness of Region I, it follows that the diffusive axial transport can
occur over a distance of 100 nm. Such a result is extremely significant, because based on the
fact that stacking faults are perpendicular to the NW axis, it seems reasonable to assume
that the diffusion length in the radial direction is higher than in the axial one. As a
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consequence, since the NW radius is around 45 nm, it seems possible to assume that an
efficient collection of carriers occurs all over the entire NW diameter.

Region lll, corresponding approximately to the total length of the NW core and of the
consumed droplet as measured by TEM, is the zone where carriers drift to the junction and
showing a very homogeneous current which is maintained stable also in proximity of the
interface with the substrate (green dashed oval). Since the current would decrease in
presence of defects, it should be concluded that a good quality interface connects the p-
GaAs core with the Si(111) substrate. The results observed along Region Il testify the
possibility of achieving homogeneous collection of carriers on a large surface, this cylindrical
junction area being 38 times higher than the NW footprint.
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Figure 4.14. Comparison between the EBIC profile along the NW axis at -1.5V bias and the structure
of the NW. The green dotted circle indicates the induced current recorded at the interface between
the GaAs core/shell junction and the SiO, layer. Dotted lines are used to define the three transport
regimes (l: diffusive transport; Il: mixed diffusion and drift transport; Ill: carrier drift to the junction).

To conclude on these preliminary results obtained on p-n core/shell GaAs NWs, |-V
measurements and EBIC mapping of single NWs have shown the absence of the leakage
current under reverse bias. The homogenous collection of carriers from the entire core
length leads to an estimation of the junction area about 38 times higher than the NW
footprint. Both results are a further demonstration of the potentialities of the radial p-n
junction for applications in photovoltaic devices.
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4.3.4 p-i-njunction in the Alo.2Gao.sAs shell: growth and characterization

After the preliminary study on p-n core/shell GaAs NWs, we approached the structure
intended to function as the PV active region in our top-cell by fabricating and characterising
NWs with the p-i-n junction in a Alo.2Gao.gAs shell grown around a p-GaAs core. The substrate
employed and the procedure adopted is similar to that one already reported in paragraph
4.3.1 to fabricate p-n core/shell NWs. We remind the reader that the Ga source employed
for this second study was the cell Ga(5) with a. = 27.9°.

Be-doped GaAs cores were then grown for 20 min with Fea = 0.5 ML/sec and Fas = 1.15
ML/sec, corresponding to R(Fy/Fu) = 2.3. After the core growth, the Ga droplets were
consumed by exposition to the As flux only (Fas = 4.05 ML/sec) at 600 °C for 4 min. The
temperature was subsequently reduced to 460 °C under the same As flux, so as to prevent
As desorption from the NWs. Afterwards, the radial p-i-n junction was fabricated at 460 °C
by growing Be-doped, intrinsic and Si-doped Alo.2GaosAs shells, followed by two more Si-
doped passivation shells of AlpsGao.sAs and GaAs. All shells were grown with Fea = 0.5 ML/sec
and Fas = 4.05 ML/sec, corresponding to R(Fv/Fi)) = 8.1. In the case of Alp2GaosAs and
AlpsGapsAs, Fa = 0.13 and 0.5 ML/sec were also adopted (originating an overall As/Ill ratio of
6.4 and 4.05, respectively). Also in this case the fluxes of Si and Be dopants adopted
corresponded to a nominal concentration of 5-:10'8 cm™ and 1.13-10'° cm3, respectively, for
a 2D GaAs layer growth rate equal to 0.5 ML/sec.

Two different samples were realised under these conditions with different shell growth
times: these are reported in Table 4.1. The so-called Sample A underwent TEM and PL
analyses, whereas the Sample B was processed for |-V and EBIC characterization of NWs. A
schematic of their structure is reported in Figure 4.15.

113



Shell Sample A Sample B
Growth time (Thickness) Growth time (Thickness)
p-Alo.2GaosAs 5 min (16 nm) 10 min (32 nm)
i-Alo.2Gao.sAs 10 min (32 nm) 10 min (32 nm)
n-Alo.2GaosAs 5 min (16 nm) 10 min (32 nm)
n-AlosGaosAs 5 min (23 nm) 2 min (9 nm)
n-GaAs 2 min (4 nm) 2 min (4 nm)

Table 4.1. Growth time and corresponding thickness for the shells of samples A and B.

n-GaAs final shell

i-GaAs (consumed Ga droplet)

n-Al, ;Ga, ;As

passivation shell — P-Aly 2Ga gAs shell

“n-Aly ,Ga, gAs shell
Epi-ready SiO,

Figure 4.15. Schematic of the GaAs/AlGaAs NWs, consisting in a p-doped GaAs core with a p-i-n
Alo2GaosAs shell and a final AlpsGaosAs/GaAs passivation shell. Profiles and lengths of the different
parts of the NW are deduced from the TEM analysis.

Once again, the doping level in the p-core can be assumed as equivalent to the nominal
one (5.10* cm3). Concerning the shell doping, knowing the shell thickness and the growth
times and considering tan o for Be and Si cells (with o = 58° and 28.9°, respectively) we can
evaluate the doping level in the shells. Since the deposition rates result equal to 0.19, 0.19,
0.27 and 0.12 ML/sec for p-Alp2GaopsAs, n-Alp2GaosAs, n-AlosGapsAs and n-GaAs shell
respectively, the related doping concentration result to be about 6.7-10* cm3, 5.2-:10'8 cm3,
3.7-10'8 cm3 and 8.4-10'8 cm3, respectively. Moreover, it should be considered that, despite
the fact that i-Alo.2Gao.gAs shell is nominally intrinsic, some kind of very light doping effects
may still occur in practice as background n-doping, as remarked by LaPierre.1% Although
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assessing the extent of such an effect is difficult, we can still assume a background n-doping
level around 5-10%¢ cm3, as reported in the above-mentioned work.

Figure 4.16(a) shows a SEM image of the p-GaAs/p.i.n-Alp2GaopsAs core/shell NWs from
Sample A. The growth leads to a density of about 1.5 NW/um? and to average values of
length and diameter equal to 2.8 £ 0.4 um and 270 + 30 nm, respectively. Since the diameter
of the core should be equal to the one of GaAs NWs grown in the same conditions, which is
typically about 70 nm, the thickness of all the shells can be estimated at about 100 nm.

Figure 4.16(b) shows a two-wave dark field TEM image (with [1-10] zone axis) of a NW
from sample A having a diameter of 250 nm, consistent with the average value of 270 + 30
nm. It is possible to distinguish three different zones: the first long L1 zone, about 2.1 pum in
length, consists of a pure ZB crystal structure with a low density of twins, consistent with the
low V/IIl flux ratio adopted during the growth.'33® On the contrary, the zone labelled as L2,
about 260 nm in length, contains a high number of stacking faults (marked as SFs) followed
by a Wz segment; this L2 zone is characteristic of the growth stop and of the Ga droplet
consumption under As flux and put in evidence for a GaAs NW in Figure 4.16(c). The last L3
zone originates from the vapour-solid (VS) growth of material occurring after the
consumption of Ga droplets. Here many stacking faults are present as well, and the
significant length of this zone (= 500 nm) attests that the axial growth continued
substantially in absence of a liquid Ga droplet via VS mechanism.

Figure 4.16. (a) SEM image of Sample A. (b) Two-wave dark field TEM image of a NW from Sample A.
Insets are HRTEM images (with [1-10] zone axis) of the L1, L2 and L3 zones. (c) Two-wave dark field
TEM image of a GaAs NW grown in the same conditions.
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The stacking faults in L3 zone are also clearly visible in the HAADF-TEM image (with [11-2]
zone axis) of Figure 4.17(a), which also highlights the presence of the AlpsGaosAs shell,
marked by the dashed black line, and of the final GaAs shell. The thickness of the AlpsGaosAs
and GaAs lateral shells can be measured and they result to be 23 nm and 4 nm, respectively.
As far as AlosGaosAs is concerned, it is possible to notice that its thickness strongly depends
on the plane orientation: as a matter of fact, the thickness of AlpsGao.sAs grown on the {111}
top facets (= 60 nm) is bigger than the 23 nm-thickness measured on the {110} lateral facets,
since the latter ones are less exposed to the Il element flux. This datum is another evidence
for the fact that the VS mechanism has an important impact on the axial growth of the NWs
after the consumption of the Ga droplets. Moreover, the clear separation between the {111}
top facet and {110} lateral facet observable in the AlpsGaosAs shell allows drawing a line of
demarcation between the {111} and {110} grown layers (dashed yellow line in Figure
4.17(a)). Thus, although we cannot distinguish visually the two facets in the core and the
inner shells, it is still possible to extrapolate where the boundary between the two layers is
located inside the NW (cf. Figure 4.18).

The presence of the AlosGaosAs passivation shell is further proved by EDX mapping,
whose results for Ga and Al are exposed in Figure 4.17(b) and (c), respectively. The analysis
showed that the actual composition of the passivation shell is between Algs1Gao.a9As and
Alos6Gao.aaAs, i.e. very close to the target value.

Figure 4.17. (a) HAADF-TEM image of the NW tip ([11-2] zone axis). The black dashed lines delimit the
AlpsGagsAs passivation shell, while the yellow one shows the boundary between the {111} and {110}
grown layers. (b) EDX map of Ga. (c) EDX map of Al.

The considerations mentioned above can be summarized in Figure 4.18, reporting the
core/shell profile of the NW: by knowing the value of the core diameter from a reference
sample (about 70 nm) and the thickness of AlpsGapsAs and GaAs passivation shells, it is
possible to estimate those of Alp2GapsAs shells, which are about 16 nm for the p- and n-
doped shells and about 32 nm for the intrinsic one. Consequently, it can be deduced that the
radial growth rate of Alp2GaosAs is approximately 0.53 A/s in these growth conditions.
Moreover, by considering the length of the L2 zone grown during the consumption of the Ga
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droplet, it is possible to notice how, according to our approximation, the boundary between
the {110} and the {111} grown layers (dashed yellow line) well ends at the NW top after the
consumption of the Ga droplet, i.e. between the L2 and L3 zones. It is worth to notice that
the deduction of shell thickness from TEM profile of p-i-n junction NWs has been already
effected in the remarkable work of Boulanger et al.*°

GaAs
p core
D~70 nm

200 nm

Figure 4.18. Schematic structure of the core/shell GaAs/AlGaAs NW as deduced from TEM and EDX
analyses. The thicknesses of the AlpsGaogsAs and GaAs passivation shells are deduced from HAADF-
TEM image (with [11-2] zone axis). The thicknesses of Alg,GaosAs p-i-n shells are estimated based on
the adopted growth times and on the fact that the diameter of the GaAs core is about 70 nm.

As far as the optoelectronic characterization is concerned, PL analysis was performed on
Sample A at 13 K with a 532 nm continuous wave diode-pumped solid-state laser (excitation
power equal to 60 mW) and with a nitrogen cooled silicon CCD detector coupled to a
monochromator.

The PL spectrum in Figure 4.19(a) shows two different peaks: a first broad and weak one
in the 1.6-1.7 eV range, and a second one at 1.48 eV, i.e. below the low temperature band
gap of undoped ZB GaAs which is 1.51 eV, The emission at higher energy is related to the
AlGaAs shells, and the peak broadening can be explained by the presence of numerous
localized states originated in the AlGaAs shell by the alloy fluctuations.’®® The emission at
1.48 eV could be explained considering different phenomena, such as a type Il emission due
to a ZB/Wz mixture,8>19%192 3n emission involving conduction band-acceptor and/or donor-
acceptor transitions,® a band-to-band emission in a doped material and a band bending at
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the GaAs/AlGaAs interface.'®” However, type Il emission, donor-acceptor transitions and
band bending cause blue-shifts with increasing excitation power, which is not observed in
the case of our sample (Figure 4.19(b)). Therefore, it can be assumed that the peak at 1.48
eV is rather related to conduction band-acceptor transitions or to a band gap narrowing
effect as a consequence of the p-doping of the GaAs core.

A weak emission below the main emission peak at 1.48 eV is also observed for all
excitation powers. This can be explained considering that ZB/Wz mixture in undoped GaAs
NWs can induce an emission below the band gap at cryogenic temperature,®191192 3
phenomenon which can also by caused in undoped ZB GaAs NWs by the presence of
twins.’®* Therefore, knowing from the TEM study that our NWs present a polytypic ZB/Wz
structure in the upper part and a low density of twins in the lower part, tend to think that
the observed low energy peak can be explained by this polytipism and the presence of twins.
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Figure 4.19. (a) PL spectrum of sample A at 13 K. The inset is a close up view of the peak related to
the AlGaAs shells. (b) PL spectra of sample A as a function of the excitation power.

The NWs grown on Sample B have d = 2.7 NW/um?, L=2.2 + 0.3 pm and D = 280 + 30 nm.
EBIC characterization was performed on single NWs of Sample B employing the same
experimental setup and conditions already described for p-n core/shell GaAs NWs. The
results of this analysis are reported in Figure 4.20, where the data collected on a statistically
representative NW are shown. The NWs grown on Sample B have d = 2.7 NW/um?, L=2.2 +
0.3 um and D =280+ 30 nm.

It can be noticed that the NWs show a strong response to the electron beam irradiation,
since it is possible to map the induced current over the whole length of the NWs even with
zero bias (Figure 4.20(b)). Moreover, the current results extremely uniform along 83 % of the
NW length, as demonstrated by the EBIC axial profile in Figure 4.20(c), thus suggesting the
presence of a conformal radial p-i-n junction. When a reverse bias is applied the electric field
across the junction is increased, thus enhancing also the induced current. This is quantified
in Figure 4.20(c), where EBIC current results higher than in the previous case although less
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uniform, with a slight increase (< 10 % variation) towards the top. This can be ascribed to a
higher electrical resistance of the shell with respect to the core, since the profile variation
over the length is influenced by the ratio between the resistance of the core and that one of
the shell.’®> Finally, the application of a forward bias flattens the p-i-n junction making its
signal disappear, as shown in Figure 4.20(b), while a current of opposite sign (black contrast)
is visible at the top of the NW. This is likely caused by the rectifying Schottky contact at the
NW/tip interface, and put in evidence in Figure 4.20(c), where no current is observed along
the NW but a negative peak from the Schottky diode at 150 nm from the contact.

Figure 4.20(d) shows the related I-V curve. Like p-n GaAs NWs, also these NWs present
diodic behaviour with very low leakage current (up to -2 V), thus confirming the good
electrical quality of the radial p-i-n junction.

C) EBIC Current (nA)
s L 20x e
<
) 5V d) =
--w_—:%—‘:--' — oV
‘%__‘_\
b
s/ Ox
I 3
!
I 0
7
f
- " :
| { —rr——p—
v e 43 2 1 [ 1 2 3 1
................. [,_A.-‘ - | Applied Voltage (V)
. 50x00*

Posison (um

-1.5V oV +15V

Figure 4.20. (a) SEM image and (b) EBIC maps under -1.5 V, 0 V and +1.5 V external bias on a single
NW. (c) EBIC axial profiles under -1.5 V, 0 V and +1.5 V external bias. (d) Single NW I-V curve
measured in dark condition.

Ultimately, these results indicate an efficient and uniform charge separation in the p-i-n
junction of p-GaAs/p.i.n-Alo2GaosAs core/shell NWs. Therefore, such structures can be
considered as potentially well-performing building blocks of our top-cell.

4.4 The passivation shell of core/shell NWs

In Chapter 1 we stress many times the importance of providing the NWs with a good
passivation shell, and in the previous paragraph 4.3 we explain the reasons which made us
adopt an AlpsGao.sAs/GaAs passivation shell. However, when it comes to the fabrication of a
NW-based solar cell, the performance alone is not the only yardstick for the practical use of
a material, another one being the compatibility with the other components of the device
and with the overall fabrication process.
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For this reason, the adoption of an AlosGaosAs/GaAs passivation shell introduces a
problem: although such a structure preserves very well the inner regions of the NWs from
oxidation and prevents surface states, it is also incompatible with the intended
manufacturing process. As a matter of fact, if we aim to develop a top-cell like the one
reported in Figure 4.7, after encapsulating the NWs it is necessary to remove that part of the
passivation shell which emerges from the encapsulation layer, so as to deposit TCO on the
exposed p-i-n junction and eventually contact the NW at their top. The problem of
AlosGao.sAs/GaAs consists in the fact that, to best of our knowledge, it does not exist any
etching procedure capable to provide selectivity between this one and the PV active
Alp2Gao sAs shell, so that any attempt of etch would inevitably jeopardize the p-i-n junction
on the exposed areas.

In order to overcome this problem, we considered two different passivating materials as
possible substitutes of AlpsGaosAs/GaAs, i.e. AloslnesP and GaoslnosP, having band gap at
300 K equal to 1.85 and 2.30 eV, respectively. These were taken into account as feasible
alternatives for different reasons: firstly, it is possible to perform selective etch in HCI
solution of Ill-phosphides from Ill-arsenides,'®® thus preserving the latter ones. Secondly,
their band gap is higher than that one of the Alp,Gao.sAs PV active region, thus reducing the
impact on the photogeneration process. Moreover, although etch selectivity and high band
gap are provided also by GaP and AIP, the ternary alloys in question are easier to integrate
because of the lower lattice mismatch, since the lattice parameter of AlgslnosP and
GaoslnosP is close to that one of Alg2GagsAs,'®” contrary to AIP and GaP (whose lattice
parameter is 0.546 and 0.545 nm, respectively).

For such reasons, we prepared a series of three samples consisting in NWs with a GaAs
core on which an AlosGao.sAs/GaAs, AlosingsP or Gagslng.sP shell was deposited. These NWs
were subsequently characterized by PL spectroscopy in order to determine which compound
is the most suitable to replace AlosGaosAs/GaAs. In all cases the GaAs cores were grown for
20 min following the standard procedure. Once formed the cores, the Ga droplets were
consumed under As flux only (Fas = 4.05 ML/sec) at 610 °C for 4 min. Subsequently, the
temperature was decreased and stabilized at 460 °C under the same As flux, so as to
prevents its desorption. After that, the shells were grown. The first sample was prepared
with 3 min of AlpsGaosAs and 2 min of GaAs growths, with Fea = 0.5 ML/sec, Fa = 0.5 ML/sec
and Fas = 4.05 ML/sec, corresponding to R(Fv/Fu) = 8.1 (and to an overall V/IlI flux ratio equal
to 4.05 in the case of AlpsGagsAs). The second one was coated with AlgsingsP for 3 min, with
Fa = 0.5 ML/sec, Fin = 0.5 ML/sec and Fp2 = 4.2 ML/sec (both Fin and Fp, are expressed as
equivalent growth rates of a 2D layer of InP on an InP(001) substrate). Similarly, the third
one was made in GagslngsP under the same conditions but Fa, in this case replaced by Fga =
0.5 ML/sec. In order to provide a reference for PL analysis, a sample of 20 min GaAs NWs
was also prepared. Throughout the whole growth the samples were rotated at 6 rpm and
the only source of Ga employed for this study was the cell Ga(5); no dopant was introduced
into the structures.
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SEM images of these samples are shown in Figure 4.21, whereas the values of NW

diameter, length and density are reported in Table 4.2.

Figure 4.21. SEM images of 20 min GaAs NWs with (a) AlosGaosAs/GaAs, (b) AlosingsP, (c) GaoslnosP,
and (d) without passivation shell (unconsumed droplets). The white scale bar corresponds to 500 nm.

Sample d L D
[NWs/um?] [pm] [nm]
GaAs/AlysGagsAs/GaAs 4.4 1.7+0.1 97+9
GaAs/AloslngsP 2.2 1.9+0.2 8818
GaAs/GaoslnosP 1.8 1.8+0.2 106 £ 12
GaAs 4.4 1.4+0.1 62+6

Table 4.2. Density, length and diameter for GaAs NWs with and without a passivation shell.

PL measurements were performed on the samples at 12 K with a 532 nm continuous
wave diode-pumped solid-state laser with 70 mW power, and with a nitrogen cooled silicon
CCD detector coupled to a monochromator. Time-resolved PL measurements were also
carried out at 12 K with a pulsed laser source having wavelength equal to 515 nm, power of
40 mW (corresponding to about 2.4 pJ/cm? per pulse) and period of 52 Mhz.
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A comparison of the PL spectra of the different samples normalized by the NW density is
reported in Figure 4.22(a). It can be noticed the positive effect of the passivation shell on the
PL peak, which become narrower and much more intense than that one of the non-
passivated NWs. Concerning the GaAs/AlosGaosAs/GaAs NWs, the main peak at 1.504 eV can
be attributable to undoped ZB GaAs, the expected value being 1.51 eV. A shoulder is also
present at 1.487 eV which could be also explained considering a ZB/Wz mixture in the NWs :
this is likely caused by twin defects or by the presence of stacking faults with ZB/Wz type Il
homojunction where the Ga droplet was consumed. It is noteworthy that corresponding
peak and shoulder are observed also in the spectrum of the non-passivated NWs, thus
confirming that these signals are due to GaAs only and not induced by the passivation shells.
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Figure 4.22. (a) PL spectra normalized for the NW density, and (b) normalized time-resolved PL
spectra of passivated and non-passivated GaAs NWs.

Regarding the AlgslngsP-passivated NWs, the intense peak observed at 1.476 eV
undergoes thus a red-shift if compared to the NWs passivated with AlpsGaogsAs/GaAs. The
red-shifts can be associated to a compressive strain in the shell and a tensile one in the

198 occurring when the shell has a bigger lattice parameter than the core (such a type of

core,
tensile strain evidently cannot occur in AlpsGaosAs, its lattice parameter being equal to that
one of GaAs). The observed red-shift is thus what is expected since the lattice parameter of
AloslnosP is slightly larger than that one of AlpsGao.sAs (GaAs/AlxIn1xP mismatch is zero when

x = 0.532).1%7

Contrary to what is observed with the AlgslngsP shell, the peak of GaAs/GagslnosP NWs is
blue-shifted compared to the NWs passivated with AlpsGaosAs/GaAs. However, in this case
that cannot be associated to a tensile strain in the shell and a compressive one in the core,
since GaxlnixP is matched with GaAs when x = 0.516.®7 As a consequence, in order to
explain such experimental result, we should conclude that the composition of the
passivation shell does not correspond to the nominal one of GagslngsP, on the contrary
having probably a composition Gaxlni«P with x > 0.516. Another characteristic of the peak is
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its broadness (about 77 meV), compared to that one for the signal of GaAs/AloslngsP NWs
(about 48 meV), which is likely induced by a higher compositional fluctuation in Gagslng.sP
than in AlgslngsP. This increase of the linewidth could also be a consequence of the strain
which will induce a small heavy hole — light hole energy splitting.

In order to better evaluate the optoelectronic properties of the passivation shell, time-
resolved PL measurements were also made to compare results obtained on passivated and
non-passivated NWs (Figure 4.22(b)). The effect of the passivation is clearly visible, since the
carrier lifetime increases significantly in presence of the passivation shell, thus indicating a
strong reduction of the non-radiative recombination phenomena at the GaAs core surface.
The carrier life-times in AlgslnosP/GaAs and GapslnosP/GaAs NWs are comparable to that
one of the AlpsGaosAs/GaAs NWs, (especially in the case of AloslngsP), suggesting that the
carriers undergo the same dynamics in all the passivated NWs. In any case the decay curve is
not mono-exponential, meaning that several decay processes are involved, such as exciton
emission, type Il emission and carrier relaxation from ZB to Wz.

Ultimately we can conclude that AloslnosP and GaoslngsP shells have similar behaviour,
the time-resolved spectrum of the former being only slightly better than the latter. But,
considering the possible presence of compositional inhomogeneities in the GagslngsP shell,
which can originate unfortunate band curving, we have come to the conclusion that for our
purpose it is Alo.sInosP which can provide optimal passivation. This is also consistent with the
previous work of Boulanger et al,°® who employed AloslnosP as passivation shell in a solar
cell based on GaAs NWs with p-i-n radial junction.
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4.5 Conclusion

In summary, we initially tried to grow Alo2GapsAs NWs on Si via self-assisted VLS
mechanism, either by direct growth or with GaAs “seeds”, but all our efforts failed, likely due
to the interaction of Al with the substrate and the NW facets, which seems to inhibit the
formation of Ga droplet (case of direct growth) or to cause the droplet consumption by
reducing the diffusion coefficient of Ga adatoms (case of GaAs “seeds”).

For this reason we opted for the alternative solution of inserting the PV-active p-i-n
junction in a Alo.2Gao.sAs shell grown around the p-GaAs core. Therefore, we investigated the
effect of the doping level of Be on the core, observing that a heavy doping level (2.5-10%°
cm3) may affect the NW morphology, whereas a lighter one (5-107'8 cm) seems suitable for
our purpose.

Subsequently, we committed to growing and characterizing p-GaAs/p.i.n-GaAs core/shell
NWs, and the EBIC analyses performed on them revealed their good diodic behaviour, a
characteristic which makes them good candidates for a PV device. After that, similar growth
were performed to obtain p-GaAs/p.i.n-Alp2GaosAs core/shell NWs, i.e. the type of
structures expected to be the building blocks of the targeted TSC. Also in this case, the EBIC
analyses gave a good response, confirming the potentialities of top-cell based on these NWs.

Ultimately, we performed a PL study on GaAs NWs with different passivation shells:
taking into account the need for a material which is both well performing and compatible
with the fabrication process, we came to the conclusion that a passivation shell of AlgslngsP
is the most appropriate for our purpose.
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5 The growth of self-assisted nanowires on patterned
substrates

5.1 Introduction

After developing the procedure to obtain optimized core/shell NWs on epi-ready Si
substrates, we directed our efforts to transfer the acquired know-how to the synthesis of
similar structures on patterned substrates.

The main issue in this case was to achieve a high-enough percentage of vertical NWs,
since non-vertical structures would be detrimental for the efficiency of the solar cell. For this
reason, a large part of our experimental work on patterned substrates was directed to this
end, although other important issues have also been addressed, such as the study of the
dynamics of Ga pre-deposition, and the impact of the SiO> mask and fabrication process.

In order to expose systematically our work of research concerning this topic this chapter
is subdivided into four sections. The first one presents the results of optical and electrical
simulations performed by A. Kaminski’s group at IMEP-LAHC in the frame of HETONAN ANR
project to identify the optimal parameters of the NW network. The experimental results
obtained by our group are described from the second part, which concerns the study of the
Ga pre-deposition on patterned substrates realised at C2N. The third one treats the growth
of NWs on the same type of patterned substrates, especially focusing on the optimization
process undertaken to obtain high vertical yields and on the growth of core/shell NWs. This
section offers insight into the factors which can have an influence on the vertical NW yield.
The fourth section regards the growth of GaAs NWs on patterned substrates prepared at
INL.

The results concerning the simulations exposed in Paragraph 5.2 have already been
published by our partners of Anne Kaminski’s group in an article by Maryasin et al,’*®
therefore we refer to the reading of this paper for more details. Otherwise, a large part of
the experimental data collected by our group about Ga pre-deposition and GaAs NW growth
on patterned substrates, as included in Paragraphs 5.3 and 5.4, have already been reported
in Referencel’,
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5.2 Optimization of substrate and NW array parameters through
simulations

Our partner at IMEP-LAHC performed coupled opto-electrical simulations so as to
evaluate the effects of the geometrical parameters and define the optimal array
configuration and NW geometry to develop a TSC. As simulations were performed, it had not
yet been understood that it was not possible to obtain axial growth of Alp,Gag sAs, therefore
the calculations were carried out assuming structures made of this alloy. Moreover,
although calculations were performed assuming square arrays of NWs instead of the
hexagonal ones later employed for the growth (cf. Paragraphs 5.3 and 5.4), we consider the
differences between the two configurations as negligible. Optical simulations were run with
Rigorous Coupled Wave Analyser (RCWA) solver. Their results were later coupled with those
of the electrical ones, performed with the numerical Sentaurus TCAD. As a matter of fact,
RCWA allows optimizing the light absorption over the geometrical parameters of a NW
array, whereas Sentaurus TCAD permits to study complex architectures and to optimize the
charge transport and carrier collection by considering also the effect of auxiliary layers and
eventually modelling the device based on optical simulations.

The main concept at the basis of RCWA optical simulations is to vary the parameters of
array period (p) (also named pitch), NW diameter (D) and length (generally indicated as L,
but referred to as H only in this section to use the notation of Maryasin et al'®) so as to fully
exploit the resonant light trapping nature of NWs and eventually maximize light absorption.
The basic strategy of the adopted approach has been already described elsewhere by
Kaminski’s group,?°® while the investigated system and the parameters employed for these

calculations are summarized in Figure 5.1 and Table 5.1, respectively.
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Figure 5.1. Schematics (a) of a square array of p-n core/shell AlIGaAs NWs on Si and (b) of a single NW
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with geometrical parameters of the TSC in question.'*®
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Parameter Description Value

0.9 pm — 2.4 pm

H Height of the nanowire 1.5 um
150 nm — 850 nm
P Nanowire array pitch size 550 nm
30 nm — 765 nm
D Diameter of the nanowire 330 nm
s Si subcell thickness 200 pm
HTO Thickness of the ITO layer 100 nm
tpass Thickness of the passivation layer 5 nm
heant Vertical extent of top contact 300 nm
tmask Thickness of the Si0; mask 10 nm
dmask Hole diameter in the Si0; mask 50 nm

Table 5.1. Geometrical parameters adopted for RCWA simulations. For H, p, D, it is reported not only
the considered range of values but also the optimal ones.'®

H, p and the filling ratio D/p have been varied to increase the photogenerated current in
the NW array. The spectral absorption is firstly calculated for each set of parameters, then
integrated with ASTM AM1.5G solar radiation density spectrum I(A) so as to provide the
photocurrent density.

g (1oonm
Dt = 1= [ A s I DAL
300 nm
where ¢ is the elementary charge, h the Planck’s constant, ¢ the light speed, A the
absorptance, | the ASTM AM1.5G spectrum and A the wavelength.

Figure 5.2(a) shows the photogenerated current as a function of p and D/p for H = 1.5 um,
this corresponding to the optimal value of NW length. The dashed grey curves show as an
example the response of NWs having D of 150 and 330 nm. The vertical grey dashed line
separates two regions with different behaviour: for D/p < 0.5, the photogenerated current
increases strongly with the filling factor, whereas with D/p > 0.5, the current tends to
saturate with a broad maximum (the graphic in question displays two maxima for J = 18
mA/cm? marked with grey spot). Figure 5.2(b) shows the difference in photogenerated
current between the top and bottom sub-cells; the grey full line marks the profile of perfect
current matching, where the difference is zero. The best matching is achieved for D = 330
nm and p = 550 nm, so that these parameters can be assumed as the optimal ones,
corresponding to a photogenerated current of 17.8 mA/cm? in the top cell and of 17.6
mA/cm? in the bottom one (the corresponding point is marked by a grey star in Figure
5.2(a)).
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Figure 5.2. (a) Photogenerated current of the top cell Jyw as a function of p and D/p. (b) Photocurrent
difference between top and bottom sub-cells.

As above mentioned, these results are obtained with H = 1.5 um; indeed, the graphic of
the current density as a function of the NW length for D = 330 nm and p = 550 nm displayed
in Figure 5.3 shows an increasing trend with H, since longer NWs are capable to absorb more
red photons. It can be also observed that the photocurrent matching Jcm saturates for H
around 1.5 um: for such a reason, this value has been considered as the optimal NW length
for our TSC.
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Figure 5.3. Photogenerated current in the top cell (blue) and overall current matching of the TSC
(green) as a function of NW length H, for D = 330 nm and p = 550 nm.

The optimization of the single NW configuration through electrical simulation is
performed by optimizing the carrier collection, i.e. taking into account the geometry and the
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electronic parameters of the system (Figure 5.4), as well as the recombination mechanisms
which are expected to occur in the structure. Continuity and Poisson’s equations are thus
solved assuming p = 550 nm, D = 330 nm, H = 1.5 um and considering four types of
recombination phenomena: surface, Shockley-Read-Hall (SRH), radiative and Auger
recombinations. The parameters adopted in the electrical simulations are reported in Table
5.2.

contact

contact (NW)

contact

Figure 5.4. Cross-section schematics of the TSC reporting the geometrical parameters of the
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system.
Parameter Deseription Value
[[8 Axial and radial shell thickness 15-50 nm
20 nm
L Core radiuz 280-315 nm
310 nm
N=N, =N, Manowire donor and acceptor doping concentration 1 = 10¥em~*1 = 10" em =3
5 x 10%em~3
'R Flectran mohility in the nanowire 1500 cm®/(V 5}—4500 cm?/(V 5)
By Hale mobility in the nanowire 100 em*AV 5)-280 em*/(V 9
iy Thermal velocity of carriers 1 % 107 em/s
T=f=1 SRH mrecombination lifetime 1me
S=5="5 Surface recombination velocity 1 = 10%emys
On =0 Carrier capture cross-section of trap states 1 % 10° % em?
Nra = N Density of surface trap states 1 % 10%em™?
Crad Radiative recombination coefficient 18 x 107" s
Chuss Hectron and hole Auger recombination coefficients 1 % 10" em®/s
[ Thickness of the umne junction layer 15 nm
Ity Danor layer thickness of the silicon bottam cell 15 nm
.51 Acceptor layer thickness of the silicon bottom cell 199.97 pm
Npt+ s Daonor doping concentration in the mnnel junction 1 % 10®em~*
N3 Acceptor doping concentration in silicon 1 % 10®em~*
N s Donor doping concentration in silicon 5 x 10" em™*
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As already mentioned in Chapter 1, one of the drawbacks of radial junctions consists in
the fact that geometry and doping level must be chosen very carefully, so as to prevent core
or shell depletion.?°12%2 Therefore, one of the purpose of the simulations was to perform an
optimization of the radial junction by varying both the thickness of the emitter and the
doping level: this was done assuming the doping level of the p-core always equal to that one
of the n-shell. The graphic in Figure 5.5 shows the efficiency of the top cell as a function of
the shell thickness and doping concentration. It can be noticed that higher efficiencies are
achieved with heavier n-doping, since charge accumulations and band bending present on
the NW surface can cause a complete depletion of the shell if this is too thin, with an
increase of SRH recombinations.?’? A possible solution to this problem may consist in
adopting a thicker and/or more heavily doped junction, or alternatively in decreasing the
doping level of the core,?®! although the latter approach presents the risk of a complete
depletion of the core, especially in the case of NWs with smaller radius.
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Figure 5.5. Conversion efficiency as a function of the shell thickness and doping concentration.

The electric simulations eventually permitted to determine the overall efficiency of the
TSC (parameters concerning the bottom cell and the tunnel junction are also reported in
Table 5.2). The as-obtained J-V curves for the two sub-cells and the TSC are shown in Figure
5.6. It can be noticed that according the calculations, Voc of TSC should be almost the sum of
those of the sub-cells, with a small loss due to the tunnel junction and to the slightly low
current in the top cell. Voc is thus found to be equal to 1.85 V, Jsc to 17.1 mA/cm? and FF to
0.87, while the efficiency of the TSC results 27.6 %. Such a value is consistent with the
realistic efficiency estimations by Bu et al'®® and Wang et al*'? already mentioned in Chapter
1.
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Figure 5.6. J-V curves for bottom cell, top cell and optimized TSC.

Ultimately, it should be noted that the electrical simulations showed no variation of the
TSC performance for hole diameters (marked as dmask in Figure 5.4) in the 50-200 nm range.
Therefore, we can conclude that the optimal structures for the development of our TSC
consists in an ordered array of holes with diameter equal to 50 nm and pitch of 550 nm,
where to grow NWs having diameter of 330 nm and length equal to 1.5 um.

5.3 The pre-deposition of Ga droplets on patterned Si substrates
prepared at C2N

In order to achieve ordered arrays of vertical self-assisted GaAs/AlGaAs core/shell NWs
and to reduce the growth of parasitic structures, it is necessary to deposit Ga droplets
selectively, i.e. only in the holes of the mask. Therefore, outlining the correct pre-deposition
protocol is a propaedeutic step to the growth of ordered arrays. In this case, experiments
were carried out on Si(111) substrates with SiO2 patterned mask prepared by electron-beam
lithography (EBL). These were fabricated by A. Cattoni at C2N as following.

The patterned substrates came from B-doped (0.02-0.06 Q-cm) 2-inches Si(111) wafers.
These were cleaned following the procedure reported by Madiomanana et al,?%* based on
repeated steps of plasma oxygen and HF etching in order to trap and remove all the non-
volatile contaminants formed on the Si(111) surface. A 20-30 nm-thick SiO, layer was then
deposited on the wafers by PECVD and patterned by EBL at 100 keV (with an instrument
Vistec EBPG5000+) using positive-tone PMMA resist (495PMMA A - solids: 2% in Anisole).
The pattern design was subsequently transferred into the SiO, mask by anisotropic reactive
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ion etching (RIE) with SFe¢/CHF3; gasses. A thin layer of SiO2 (4-5 nm) was intentionally
conserved at the bottom of the holes, so as to prevent possible damages to the Si(111)
surface by the RIE.

Each wafer was patterned so as to provide 9 chips of 1 cm x 1 cm (Figure 5.7) and to study
the influence of hole diameter and pitch on the vertical NW yield. In every chip there was a
first zone with 20 um x 20 um patterned areas with hexagonal arrays of circular holes
realised by exposition to the electron beam. These patterned areas differed from one
another because of the pitch (300, 400 and 500 nm) and the nominal hole diameter (from 20
to 80 nm - column 1 to 7) adopted, for a total of 21 different areas on each chip. Below this
zone it was introduced a second one with 1 mm x 1 mm patterned areas (4 with p = 500 nm
and 4 with p = 1um) with circular holes realised with exposition to the electron beam with a
single shot (dose from 18000 to 31000 mC/cm?). Every chip was separated from the others
by UV-laser cutting.

D (nm) 30 40 50 60 70 80 90

P=300rm
P=400rm

P=500 nm e

P=1 um

Figure 5.7. Design of the patterned mask prepared by our partners at C2N.

Since a decade, many experimental works concerning the growth of GaAs (or related
ternary alloys) NWs on patterned Si substrates have been conducted to define optimal
procedures and maximize the vertical NW yield.”>139210-213,141,159,204-209 |5 qyr work, this was
carried out on patterned SiO2/Si substrates after a chemical pre-treatment in a 1% HF
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solution: as a matter of fact, the silicon oxide at the bottom of the holes in the silica mask
prevents the selective deposition of Ga impeding the VLS growth, so that it is necessary to
remove it to obtain the self-assisted VLS growth of the NWs. The etching time must be well
calibrated in order to achieve the proper value of final thickness for the silica mask, given
that this is a parameter which strongly affects the NW verticality.2% The etching isotropy is
another reason to control and reduce as much as possible the timing of this step since the
size of the patterned holes might reach a critical value beyond which it is difficult to obtain
vertical NWs.

Based on these considerations, the applied chemical pre-treatment consisted in etching
the patterned substrate for 25 sec in a 1% HF solution, then rinsing it in de-ionized water for
20 sec, this causing a reduction of the SiO, layer thickness from 25 to 19 nm. Ga pre-
deposition (108 MLs) was performed at 600°C on as-treated substrates with Fga = 0.5
ML/sec. It must be noticed that all NW growths on patterned substrates have been carried
out employing the Ga(5) cell (a = 27.9°) as source.

This procedure provided excellent results in terms of selectivity, as illustrated in Figure
5.7, because all holes are filled with a single Ga droplet regardless their diameter and pitch
(the only exception consists in those ones with nominal diameter of 20 nm, which were
probably not transferred during the EBL because of the too small size), and because the
deposition does not occur outside holes, thus reducing significantly the risk of parasitic NW
growth.

It was also noticed that the diameter of the droplets, yet depending on that one of the
holes, is independent from the value of the pitch, being almost the same in holes of the
same size on pitches from 300 to 500 nm (Figure 5.8). This is as an evidence for the fact that,
with a Ga flux alone (without any As flux), there is not any Ga adatom surface diffusion effect
contributing to the size of the droplets, which is determined only by the amount of Ga
arriving directly on the holes.
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Figure 5.8. (a) SEM images of hole networks after the HF treatment and related values of the hole
diameter (at the top) in nm (nominal diameter in brackets) (b) SEM images of the corresponding
holes after the Ga deposition (108 MLs) and related values of the hole diameter (at the top) in nm
(black) and of the Ga droplet diameter (red) in nm. The white scale bar in each image stands for 500
nm. The images here reported correspond to patterned areas with a 400 nm pitch, but analogous
results in term of droplet diameter were observed also for 300 and 500 nm pitches (here reported as
an example for nominal hole diameter of 40 nm), thus suggesting that the size of the droplet
depends only on the Ga direct impingement and not on the diffusion of Ga adatoms.

In Figure 5.9, the average values of the hole diameters (at the top) before and after the
Ga deposition are also reported. The most important consideration that can be made
observing these data is that the hole top diameter increased significantly during the Ga
deposition. Since the substrate was previously treated with 1% HF solution in both cases, the
enlargement must be attributed to the action of Ga itself. A visible example of this
phenomenon is reported in Figure 5.9, showing two holes patterned with the same nominal
diameter of 60 nm after HF treatment (increase from 60 to 67 nm) and Ga deposition. It is
thus possible to observe that the hole top diameter increased from 67 to 80 nm due to the
Ga deposition, with a Ga droplet which is 61 nm in diameter.
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Figure 5.9. SEM images of holes patterned with the same nominal diameter: (a) after the 1% HF
treatment (top view), and (b) after Ga deposition (45° tilted). In both cases the white scale bar
corresponds to 50 nm.

Although these results may suggest that the SiO; mask was etched by the Ga flux,
ellipsometric measurements proved that the overall thickness of SiO; is unchanged after the
Ga deposition, so that it can be concluded that only the hole walls were involved in the
etching process.

Starting from the SEM images it is also possible to calculate the approximate volume of
holes after the Ga deposition and of the related Ga droplets. For the hole volume, we have
therefore to take into account the profile of the hole as revealed by TEM imaging performed
on thin lamellae prepared by Focused lon Beam (FIB) on a sample were GaAs NWs had been
grown (Figure 5.10). The FIB procedure was performed at INL by S. Brottet.

~---o-7. Si0, mask

100 nm

Figure 5.10: TEM images of a thin lamella prepared by FIB including a row of self-assisted GaAs NWs
grown on a patterned substrate.

TEM images like the one shown as an example in Figure 5.11(a) shows that the shape of
the holes corresponds to a truncated cone with an average angle a equal to 62°, and
consequently their volumes were calculated adopting this geometry. This allows estimating
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the diameter of the hole at the bottom for each case knowing the one at the top from SEM
measurements. Given a hole depth equal to 19 nm, the hole volumes can be obtained. The
volume and the height of the Ga droplets were instead calculated assuming them as
spherical caps with a diameter equal to the one measured by SEM and a contact angle 9 for
liquid Ga on a crystalline Si surface equal to 50°.14’

The results of the diameter measurements or calculations of the Ga droplets and of the
top and the bottom of the holes are reported in Table 5.3, as well as the hole volume and
the droplet volume and height for each related case. By comparing the bottom diameters
after the 1% HF treatment only and after the Ga deposition with the nominal values of the
untreated holes and considering the related errors, it can be stated that the three series of
values are de facto equivalent. Considering that after the RIE etching the holes are
cylindrical, these results suggest that neither the HF etch nor the Ga deposition step
increases the diameter of the hole bottoms and that the etching of the SiO2 during the 1%
HF treatment and the reduction of SiO; by Ga only occur on the SiO; walls, as schematized in
Figure 5.11(b): as a consequence, the bottom diameter can be considered always constant
and approximated to the nominal one, and the same consideration can be made therefore
for the Ga capture surface.
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63 nm

Figure 5.11. (a) TEM image of a FIB-prepared thin lamella showing a NW grown inside a patterned
hole in SiOy; it is possible to observe the truncated conical shape of the hole, with the angle a
marked in red. The white scale bar corresponds to 5 nm. (b) Schematics of the hole enlargement

caused by 1% HF etching (red) and Ga deposition (blue) in a hole whose top and bottom diameter
before any treatment corresponds, as an example, to the nominal value of 40 nm ( measured value:
43 nm); the final angle a of the hole is 62°. (c) Schematics of a Ga droplet deposited in a hole whose
top and bottom diameters are, as an example, equal to 63 and 43 nm, respectively, after the Ga
deposition; the angle a is equal to 62°, the contact angle 8 is equal to 50° and the height of the
droplet is estimated at 9.6 £ 1 nm. The hole depth is equal to 19 nm (SiO; thickness after the 1% HF
treatment). (d) SEM image at grazing angle (5°) showing patterned holes after the deposition of 108
MLs Ga: as expected, no Ga droplet peeps through the holes, which is consistent with the hypothesis
of a wetting angle at Ga/Si interface around 50°. The white scale bar corresponds to 200 nm.
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Mominal Haole Hiole Hole diameter | Hole volume | Ga droplet Ga droplet Ga droplet Ga volume
diameter | diameterat | diameter at | atthe bottom after Ga diameter height volume coming from
of the the top after the top after Ga deposition atomic flux
hales HF after Ga deposition Vh D hy Ve W
treatment deposition
[as |measured] | [measured) [caloulated [calculated) | [measured) [caloulated [calculated [caloulated)
patterned) based on the based on a based on
TEM image) contact angle measured
=50° ) droplet
diameter)
[mrmn] [nm] [nm] [nm] [rimm¥] [nm] [nrm] [rm*] [nm¥]
30 38t3 5313 izts 28000 + 34t2 78%t1 3000 * 500 11000
3200 2000
40 50%t3 6313 4313 42300 41%2 96t GE00 * 700 1E700
4700 2600
50 603 7113 5113 55800+ 51%1 119t1 13000 % 28300
3400 1100 3100
&0 5712 EDt3 013 73400+ 61f2 1401 21500+ 38300+
8500 2100 is500
70 7813 Egtz gotz 93400 + 63f2 165111 323001 48100+
G200 2700 ZEO00
B0 qot2 ogt3 TELX3 115800 2 Jjet2 17.7%1 43100+ 61400+
E000 J=00 4700

Table 5.3. Hole diameter and volume (measured or calculated) and corresponding diameter and
volume of Ga droplets (measured or calculated) for patterned area with pitch equal to 350 nm.
Experimental data from Figure 5.7.

Similarly, it can be observed that the values of the Ga droplet diameters and those of the
hole bottoms are equal in their margins of error: this fact suggests that the Ga droplets tend
to cover entirely the available Si surface at the bottom of the hole, thus adopting a
configuration, as schematized in Figure 5.11(c), where the droplet do not wet the silica.
Since the difference in diameter between the Ga droplets and the related holes at their top
is always about 20 nm, it can be concluded that this is the common configuration for any
hole diameter here reported, providing the Ga amount is sufficient to cover entirely the hole
bottom.

It can be also noticed that, based on these calculations, the height of the droplets is
always lower than the depth of the corresponding holes. This result is consistent with SEM
images of the patterned areas collected at grazing angles (Figure 5.11(d)), showing that, for
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this amount of Ga and in this range of hole diameters, the Ga droplet height do not exceed
the hole height.

In order to evaluate the Ga volume Vi coming from the Ga atomic flux which can be
intercepted by the hole, we assumed a capture surface corresponding to the one at the
bottom of the hole, as above mentioned. Based on this consideration and adopting a
procedure previously used by Plissard et al. in 2011,2% the corresponding volume of Ga to
which every hole was exposed was finally estimated (Table 5.3). This can be calculated with
the formula:

ny = FTdDGaS

where np is the amount of Ga adatoms evaporated in the hole, I is the growth rate (ML
sec™?), Tq is the duration of the deposition step (sec), Daa is the density of adsorption sites
(sites MLt nm2) and S is the hole surface (nm?).

It is noteworthy that these calculated volumes always exceed those ones of the Ga
droplets Vg4, thus suggesting that not all the Ga arriving on the holes contributes to the
formation of the droplets, part of it being desorbed at such temperatures. A possible
interpretation to explain such results is that part of the Ga coming from the atomic flux
desorbs because in such conditions the droplets might be in an equilibrium state with a
contact angle 9 = 50°, and therefore they would tend to maintain this stable configuration
rather than changing their shape and increasing their size.

In particular, considering AVol the difference between the volume Vs of the Ga coming on
the capture surface from the atomic flux and the volume V4 of the droplets, it can be noticed
that plotting AVol as a function of the droplet radius R4, on which the droplet perimeter
depends, a linear relationship is obtained (Figure 5.12(a)). On the contrary, plotting AVol as
a function of the droplet surface clearly does not show any linear behaviour (Figure 5.12(b)).
This fact suggests therefore that the excess of Ga is desorbed from the perimeter of the
droplet and not from its surface. As schematized in Figure 5.12(c), a Ga atom desorption
process taking place on the silica flanks at the droplet perimeter droplet can be advanced to
account for the measured droplet volumes.
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Figure 5.12. Evolution of AVol as a function of (a) the droplet radius (relative to its perimeter) and (b)
the droplet surface. (c) Schematics of the proposed mechanism for the Ga desorption; once the
droplet reaches an equilibrium configuration, it tends to keep it by desorbing the excess of Ga from

its perimeter.

The above-reported experimental data show that the Si(111) substrates covered with
EBL-patterned SiO, mask as prepared at C2N ensure a total selectivity for Ga deposition in
the holes. This study allowed us to describe how the Ga droplets are placed inside the holes,
and to link the size and shape of the holes with those ones of the Ga droplets. In particular,
having found out that the diameter of the droplets coincides with that one of the hole
bottom and that the hole have conical shape, constitutes an important information about
the system configuration at the beginning of the growth. This will certainly be helpful to
develop hypotheses to identify the factors and mechanisms leading to high vertical yields (cf.
Paragraphs 5.4 and 5.5).
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5.4 The growth of NWs on patterned substrates prepared at C2N

In this section, we will finally address the growth of ordered arrays of NWs on patterned
substrates prepared at C2N. As previously mentioned, in order for the photovoltaic cells to
function properly, it is crucial to obtain a high rate of vertical GaAs NWs, minimizing the
presence of both parasitic crystallites and inclined structures. In particular, we assumed a
vertical rate of about 90 % as a good enough target for proceeding with the development of
PV devices. Such an objective was eventually fulfilled, although the development of an
efficient and reproducible protocol, based on the use of a thermal pre-treatment, was a
difficult step which cost us a lot of effort. The details concerning this study are reported in
the Paragraph 5.4.1.

Once achieved this goal, we committed to employing the acquired know-how to
synthesize ordered arrays of PV active core/shell NWs, with the prospect of using these
same samples in the future manufacture of photovoltaic cells. The results of the growth of
these core/shell NWs, as well as the characterization of their radial junction by EBIC, are
reported in the Paragraphs 5.4.2 and 5.4.3.

5.4.1 The quest for a high vertical yield: the importance of the thermal pre-
treatment

Having obtained promising results with the protocol adopted for the Ga pre-deposition,
we decided to adopt this procedure in the growth of GaAs NWs. Therefore, we adopted the
same type of substrate and procedure described in Paragraph 5.3, firstly cleaning the
bottom of the holes with 1% HF solution for 20 sec, then pre-depositing 108 MLs of Ga at the
rate of 0.5 ML/sec at temperatures in the 600-615°C range, and finally growing the NWs for
10 min with Fga = 0.5 ML/sec and Fas = 1.15 ML/sec (R(Fas/Fca) = 2.3) at the same
temperature.

The results obtained initially proved to be contradictory: although a couple of samples
provided high vertical yields (up to =75 %) in some patterned areas (Figure 5.13(a)), the rest
of the specimens (prepared with such a procedure both as GaAs and as GaAs/Alp2GaosAs
core/shell NWs) presented a much lower rate of vertical NWs, reaching a maximum of 30-40
% (Figure 5.13(b)). This fact could not be associated either with a chronological effect, since
the few high yield samples were alternated with the vast majority of low-yield samples, or to
an influence of the substrates, since this behaviour was observed on samples coming from
different Si wafers.
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Figure 5.13. (a, b) SEM images (top view) of GaAs NWs taken from different samples on equivalent
patterned area with pitch equal to 400 nm and nominal hole diameter of 40 nm. The white scale bar
corresponds to 500 nm. Despite the procedure for growing the NWs was the same in both cases, the

percentages of vertical structures (in yellow) differ by 2.5 times.

We then performed a statistic study on a sample which provided high vertical yields
(Figure 5.14). We observed that whatever the pitch, the highest vertical yields are reached
for nominal diameters in the 40-50 nm range, as reported in Figure 5.15. The graphic shows
also that there is no significant dependence of the vertical yield for pitches ranging from 300
nm to 500 nm: this is consistent with the results already observed for the Ga droplets which,
as above-mentioned, showed homogeneous diameters despite the different pitches.
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Figure 5.14: SEM images (top view) of a sample with high vertical yield from (a) multi-exposure and
(b) single-exposure patterned areas. The red values corresponds to the pitch, the blue ones to the

nominal hole diameter and the yellow ones to the exposure dose. The white scale bars correspond to
2 um.
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Figure 5.15. Percentage of vertical NWs as a function of the nominal hole diameter and pitch for a
sample with high vertical yields (SiO; thickness equal to 19 nm; 108 MLs of Ga).
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Based on these results, we advanced the hypothesis that the gap in vertical rates
between different substrates may be caused by some differences in the shape of the holes.
Therefore, we prepared thin lamellae by FIB including a single row of vertical and non-
vertical NWs. In order to determine the crystal structure of the NWs, it is necessary to
observe the NWs along the zone axis [110]. After the orientation of the (1-10) faceted NWs
(typical faceting for self-assisted GaAs NWs having a ZB structure), the lamellae were
realized along an orientation perpendicular to a <110> direction, as shown in Figure 5.16.
Such procedure was performed at INL in collaboration with S. Brottet.

Zincblende

(1128

[T11]8 (110

Figure 5.16. SEM images (top view) of GaAs/Alg,GaosAs core/shell NWs grown on 20 x 20 um?
patterned areas. Lamellae (marked in yellow) were realised by FIB to be perpendicular to a <110>
direction (cf. schematics®'* below (a)) so as to provide a TEM observation with [110] zone axis. The
white scale bars correspond to (a) 1 um and (b, ¢) 5 um.

The row reported in lamellae included both vertical and non-vertical NWs (Figure 5.17(a)):
the TEM images collected over them (Figure 5.17(b, c)) showed that there was no visible
difference between the two cases in terms of hole shape, the a hole angle being equal to
about 62°, the average value measured on a large number of holes (cf. Paragraph 5.3, Figure
5.11).
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Figure 5.17. (a) TEM image of a thin lamella containing a NW row with non-vertical and vertical NWs
removed from the patterned area of the sample by FIB. The white scale bar corresponds to 2 um.
TEM images of the NW bottom of: (b) a non-vertical NW (marked as N-V in (a)), and (c) a vertical NW
(marked as V in (a)). No significant differences in shape or geometry can be observed.

In a remarkable study, Tomioka et al?!> related the orientation of InAs NWs grown on
Si(111) by MOCVD to the polarity of the NWs, in particular suggesting that NWs with As-
polarity would grow vertically, while their In-polarity counterpart would be tilted. Based on
these considerations, we decided to characterize the polarity of the NWs to verify any link
between this parameter and the verticality. The results of this analysis are reported in Figure
5.18. We observed that in our case all NWs, either vertical (Figure 5.18(a)) or not (Figure
5.18(b)) have As-polarity at the beginning of the growth, with Ga-polarity which can be
possibly caused by non-horizontal twin defects (Figure 5.18(c)). As a consequence, it must be
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concluded that in our case there is no correlation between verticality and As-polarity, which
can at most be regarded as a necessary yet not sufficient condition to obtain vertical NWs.
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Figure 5.18. HR-TEM images of (a) vertical and (b, c) non-vertical GaAs NWs from FIB-prepared
lamellae, and related diagrams of the contrast as a function of the position, which provide the NW
polarity. All NWs have an As-polarity. In the case (c), the polarity switches from As to Ga after the
formation of a non-horizontal twinning defect.
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The solution to the problem of verticality came after many vain efforts and failed
attempts to reproduce systematically the high vertical yields. Finally, we found out that the
only difference between the couple of samples which provided a high vertical yield and the
rest of the samples consisted in the fact that, in the previous case, the Tgowth Of the recipe
was corrected shortly before starting the pre-deposition of Ga, since the real temperature as
measured by the pyrometer resulted 15 °C higher than expected (625 °C instead of 610 °C).
After realising that, we started to believe that heating the substrate to a temperature T
higher (+15°C) than Tgrowth and decreasing it a few minutes before the Ga pre-deposition may
have acted as a sort of thermal pre-treatment, which may have influenced the system in the
right way to achieve higher vertical yields.

In order to verify such hypothesis, we decided to repeat the growths in the same
experimental conditions either with (Figure 5.19) or without a thermal pre-treatment at Tin =
15°C abOVe Tgrowth.
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Figure 5.19. Synopsis of the procedure adopted for sample grown with a thermal pre-treatment and
a cooling time equal to 5 min.

These experiments were carried out on patterned samples prepared at C2N with the
above-mentioned procedure, but with a pattern design consisting of a hexagonal array of
holes with pitch equal to 500 nm and nominal diameter of 50 nm, prepared by single
exposition with a dose of 20000 puC/cm?. Such values were chosen both for the high vertical
yields observed with this parameter, as above-mentioned, and because close to the optimal
parameters calculated by Maryasin et al*®® at Anne Kaminski’s group already reported in
Paragraph 5.2.
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Moreover, in order to go further in the development of PV devices, these new substrates
were prepared by patterning a much larger area than in the previous cases, corresponding to
a surface of 0.9 x 0.9 cm?. Eventually, in order to verify the possible influence of the thermal
pre-treatment on the vertical yield, we kept all parameters constant except the thermal
ones, as above-mentioned. Therefore, three different samples coming from the same
patterned wafer were prepared: the first one at Tgowtn = 600 °C without thermal pre-
treatment, the second at Tgrowth = 615 °C without thermal pre-treatment, and the third one
at Tgrowth = 600 °C after 5 min of thermal pre-treatment at 615 °C plus sudden cooling and
thermal stabilization at 600 °C in 5 more min. Since our hypothesis assumed an influence of
the thermal pre-treatment alone rather than of the overall temperature at which the growth
is performed, we expected to achieve a low vertical yield for both samples grown without
thermal pre-treatment, and a high one on the thermally pre-treated sample. Our
expectations were not disappointed: as a matter of fact, the two samples realised without
thermal pre-treatment (Figure 5.20(a, b, ¢, d)) present vertical yield from 13 to 22 %,
whereas the sample prepared with the thermal pre-treatment shows a vertical rate from 73
to 86 %, depending on the zone (Figure 5.20(e, f)).
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Figure 5.20. 45°-tilted (a, c, e) and top view (b, d, f) SEM images of NWs grown on 0.9 x 0.9 cm?
hexagonal array with pitch equal to 500 nm and hole diameter of 50 nm. (a, b) Growth performed at
600 °C without thermal pre-treatment (vertical yield 13-22 %). (c, d) Growth performed at 615 °C
without thermal pre-treatment (vertical yield 14-22 %). (e, f) Growth performed at 600 °C after
thermal pre-treatment at 615 °C (vertical yield 73-86 %). The white scale bars correspond to 2 um.

Considering that similar results for the three procedures were reproduced on chips from
different wafers prepared at C2N, as well as on patterned substrates prepared at INL (cf.
paragraph 5.5.2), the correlation between thermal pre-treatment and high vertical yield is
neither accidental nor due to other hidden factors, e.g. related to the nature of the single
wafer used or to the quality of the SiO, deposited. Moreover, it should be noticed that the
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high verticality so achieved can be attributed to the only influence of the thermal pre-
treatment rather than to the value itself of sample temperature, since growths carried out at
lower temperatures (with thermal pre-treatment at 560 °C before growth at 545 °C)
provided similar results. Therefore we can state that, in our MBE reactor, the thermal pre-
treatment is actually a key-step for obtaining a high percentage of vertical NWs on this kind
of patterned substrates.

5.4.2 Growth and characterization of core/shell NWs

Once realised that the pre-treatment was necessary for high vertical yields, we
introduced this step in the growth procedure of core/shell NWs. Aiming to obtain fully-
optimized structures, so as to eventually employ them in the fabrication of solar cells, we
grew p-GaAs NWs with p-i-n Alp2Gao.sAs PV-active shell and AloslngsP passivation shell.

Our purpose in this case was to match and possibly break the record of verticality
previously obtained with the growth of NWs on pre-treated substrates (= 75 %), overcoming
the previous vertical rates obtained for GaAs/Alo.2Gao.sAs core/shell NWs grown without pre-
treatment, the highest ones being = 40 % (Figure 5.21).

Figure 5.21. SEM images (top view) of GaAs/Alo,GaosAs core/shell NWs with pitch of 400 nm and
nominal hole diameter equal to 40 nm grown without thermal pre-treatment; their vertical yield (=
40 %) is the highest one obtained without pre-treatment. The white scale bars correspond to (a) 5
and (b) 2 um.

Also in this case, the thermal pre-treatment has a dramatic effect, the vertical yield of
GaAs/Alp.,Gag.sAs core/shell NWs passing from = 40 % to more than 80 % (Figure 5.22).
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Figure 5.22. SEM images (top view) of GaAs/Aly,GaosAs core/shell NWs grown (a) without thermal
pre-treatment on a 20 x 20 um? patterned area (pitch and hole diameter of 400 nm and 40 nm,
respectively) and (b) with thermal pre-treatment on a 0.9 x 0.9 cm? patterned area (pitch and hole
diameter of 500 nm and 50 nm, respectively). The white scale bars correspond to 5 um.

In Figure 5.23, SEM images shown a representative result obtained for core/shell NWs
realised with a thermal pre-treatment at 625 °C during 15 min before reducing and
stabilizing the temperature at 610 °C in 5 min. Typically, a vertical yield from 83 to 87 % is
obtained depending on the zone, a value which is not only high but also uniform over the
relatively broad area of 0.9 x 0.9 cm?. The NW diameter results equal to 260 + 18 nm, lower
than the expected value of 330 nm.
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Figure 5.23. (a) Top view (a, b, c) and 45°-tilted (d, e, f) SEM images of p-GaAs/p-i-n Alo2GaosAs
core/shell NWs grown on patterned Si substrates with thermal pre-treatment. The white scale bar

corresponds to 5 um (a, d), 2 um (b, e) and 500 nm (c, f).
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Other experiments confirmed these results, providing high vertical yields in the 80-90 %
range, as a proof that the protocol including the thermal pre-treatment leads to
reproducible results. Ultimately, thanks to this procedure we have been able to develop a
protocol which allows to achieve high yields of vertical NWs on large-area patterns realised
by EBL through single exposures and having pitch close to the optimal values.

5.4.3 EBIC characterization of core/shell NWs

In order to investigate the optoelectronic properties of individual NW, EBIC and I-V
measurements were performed on analogous p-GaAs/p.i.n-Alp2GaosAs core/shell NWs with
n-doped Alo5GaosAs/GaAs passivation shells.

The analyses were performed on the same sample reported in Figure 5.22(a), which was
realised when the thermal pre-treatment had not yet been introduced in the procedure, and
thus presents a relatively low verticality yield (10-40 %, depending on the zone). However, it
is precisely this characteristic that makes it a good candidate for EBIC analysis, since the
lower the density of vertical NWs, the easier it is to contact them with the tungsten tip.

Figures 5.24(a, b) show the SEM image and the corresponding EBIC map for a NW
contacted on the top. Similarly to the case of the core/shell NWs grown on epi-ready Si
substrates reported in Chapter 4, an induced current is observed over the entire NW length
under zero external bias. The collected current is increased under revers bias of -1.5 V,
whereas under a forward bias of +1.5 V the signal from the p-i-n junction disappears and a
signal from a Schottky contact is revealed at the NW top.

We have further analysed the impact of the contact position on the charge collection. The
tungsten tip was moved and a NW was contacted on a lateral facet. We note that a strong
force should be applied to establish a reliable lateral contact and a NW can be easily broken
during this contacting procedure. For this reason, Figures 5.24(a, b) and (c, d) show results
obtained for two different NWs coming from the same patterned substrates. Figures 5.24(a,
b) display the SEM image and the corresponding EBIC maps obtained for a NW contacted on
the top, while Figures 5.24(c, d) are obtained for a NW contacted at the middle of a lateral
facet. Under zero and reverse bias, a uniform EBIC signal is found over the entire NW length.
This shows that the contact position does not impact the carrier collection. Under forward
bias, a signal characteristic of a Schottky diode is revealed around the contact point.

Current-voltage characteristics were compared for two NWs contacted on the top and on
a lateral facet, respectively, as presented in Figure 5.24(e). For both NWs with different
contact positions, the I-V curves present a diodic behaviour. However, for the NW contacted
on the top, the slope of the curve is steeper in the forward bias indicating a lower series
resistance. The knee diode voltage is =1.0 V for the top contact, whereas it decreases to 0.6
V for the NW contacted on the lateral facet. We suppose that these modifications are not
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inherent to the NW, but are related to the variation of the tip-to-NW contact. For both NWs
contacted at different positions, the reverse leakage current is very low thus confirming the
behaviour already observed for the NWs grown on epi-ready Si substrates. The difference in
the leakage current may arise from NW-to-NW variability, although it may also be ascribed
to some modifications/degradations induced by lateral bending.
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Figure 5.24. (a) SEM image and (b) EBIC maps under -1.5 V, 0 V and +1.5 V external bias, for a NW
contacted on the top. (c) and (d) same as (a) and (b) for a NW contacted on a lateral facet. (e) Semi-
log I-V curves for a NW contacted on the top and on a lateral facet.

Ultimately, the NWs grown with this protocol on patterned substrates also appear as
promising building-block for a PV device, just as their counterparts on epi-ready Si substrates
previously dealt with in Chapter 4, and their suitability for the intended purpose seems all
the more confirmed by the high vertical yield and uniformity achieved on patterned
substrates.

5.5 The growth of NWs on patterned substrates prepared at INL

As above mentioned, the results shown so far were obtained on patterned substrates
prepared by our partners at C2N. However, one of the goal of the work in our group was also
to develop an independent know-how of patterning, not only to be capable of working
autonomously but also to verify the robustness of our growth protocol (and especially of the
thermal pre-treatment) on different substrates.

For such purpose, we also prepared Si(111) substrates with a SiO; mask. Since patterning
large surfaces is expensive and time consuming, and considering that these samples were
meant to be employed mainly in preliminary studies for better investigating the mechanisms
at the origin of the high vertical yield, in this case the ordered arrays were limited only to
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small patterned areas. As a consequence, these samples could not be employed in the
fabrication of PV devices, notwithstanding the experiments carried out on them have helped
to clarify the factors which influence the vertical rate.

The guidelines of our work in this regard were basically of two orders: the study of the
impact of the absence or presence of the native oxide on the Si substrates before the SiO;
mask deposition, and the investigation of the influence of the cooling rate during the step of
thermal pre-treatment. These two topics are addressed respectively in paragraph 5.5.1 and
5.5.2.

5.5.1 The impact of the epi-ready oxide etching before the Si0O: mask
deposition, on the NW verticality

INL patterned substrates were realised from B-doped (0.02-0.06 Q cm) Si(111) wafers.
The overall procedure included a first deposition of SiO, (20-30 nm) by Electron Cyclotron
Resonance (ECR) PECVD (performed in our laboratory by P. Regreny), followed by EBL
patterning (performed at CIME Nanotech in Grenoble by C. Chevalier) to transfer the mask.
The mask design in this case consists of a series of 20 small patterned areas of different size
(about 15 x 15 or 20 x 20 pm? each) with different nominal hole diameters and pitches, as
shown in Figure 5.25.
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Figure 5.25. Schematics of the mask design adopted to fabricate the INL patterned substrates. The
value of T at the left of each line indicates the related pitch expressed in nm, whereas the value of ©®
at the top of each column corresponds to the nominal hole diameter, also expressed in nm.
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Also in this case, before the growth of GaAs NWs, the Si(111) substrates were treated in
1% HF solution for 25 sec and degassed at 200 °C in UHV before introduction inside the
reactor. The NW growth protocol is also the same as the one already adopted on C2N
substrates (deposition at 610 °C of 108 MLs of Ga at 0.5 ML/sec and growth of GaAs NWs for
10 min at the same temperature with standard conditions).

The first experiments on this type of substrates were performed without thermal pre-
treatment, because at that time we had not yet realized the importance of this procedure to
obtain high vertical yields. These samples were grown on Si substrates on which SiO; had
been deposited by ECR-PECVD directly on the epi-ready Si surface (without any HF etching of
the epi-ready oxide surface layer), and the results in terms of verticality were rather poor,
with vertical yield only about 30 %. Based on an article by Tan et al,?*?> we decided to repeat
the growth on samples undergone the same patterning procedure, plus a wet etch in HF
solution immediately before the ECR-PECVD deposition of SiO;, so as to eliminate the epi-
ready oxide (this being a step also adopted by our partners at C2N in their standard
patterning procedure) and deposit the SiO; mask on the bare Si surface. These substrates
eventually lead to about twice higher vertical yields (=60 %) than in the case of a direct SiO;
mask deposition on the epi-ready Si surface, thus confirming what already reported in the
literature and demonstrating that the removal of the epi-ready oxide layer before the mask
deposition is not a negligible step to obtain high vertical yields.

5.5.2 The impact of the cooling rate in the thermal pre-treatment

The development of the patterning know-how at INL has meant a greater availability of
samples, and thus the possibility to go deeper into the mechanisms which ensure that the
thermal pre-treatment provides high vertical yields. This leads us to formulate some
hypothesis which, although still far from being a definitive explanation, can at least
constitute a starting point for the understanding of the phenomenon in question.

The clue which triggered our reflection came from the experimental results performed on
C2N patterned substrates. When illustrating Figure 5.20 in Paragraph 5.4.1 we already
mentioned the fact that the high vertical yield was due to the temperature gap between pre-
treatment and growth and not to the absolute Tgrowth, Since samples grown at 600 and 615 °C
without pre-treatment both showed low vertical yields. This particular fact caught our
attention: how to explain that the behaviour of the system depends on a temperature gap in
its thermal history rather than on its absolute temperature?

Our hypothesis is based on the consideration that in the system in question there are two
components with very different physical characteristics i.e. Si and SiO,. Since it is widely
known that the thermal properties of semiconductors differ significantly from those of their
corresponding oxide, it does not seem unrealistic assuming that Si and SiO; might also have
a different response to the heating-and-cooling steps of thermal pre-treatment. In
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particular, we came up with the idea that one of the components might keep hotter than the
other for a certain time after the cooling phase, determining therefore the presence of a
thermal gradient, and that this fact might somehow exert a positive influence on the NW
growth and/or nucleation, thus leading to high vertical yields.

Theoretically speaking, despite the thin thickness of the mask and the narrow
temperature gap between the temperatures of pre-treatment and growth (=15 °C), the
preservation of a difference in temperature between Si and SiO; is possible. As a matter of
fact, if we express the heat equation in the following form:

519_ k 5219+ 5219+ 529
5t pc\éx2  Syz  §z2

(with O absolute temperature, t time, k thermal conductivity, p volumetric mass, ¢ specific
heat, and x, y, z the dimensions of the considered component) the system could show a
difference in temperature between Si and SiO, while cooling, i.e. different §3/6t for each
material, if for example the two compounds have different k/pc terms. As a consequence,
we should take into consideration the values of p, ¢, and k for Si and SiO; in order to verify
whether such an assumption is justified.

In this regard, knowing that p is equal to 2329 and 2170-2650 kg m™ for Si and SiO>
respectively,?1627 it can be concluded that there is not a significant difference between the
two materials in terms of volumetric mass.

As far as the specific heat is concerned, the main problem is the lack of data regarding the
values of this parameter at high temperatures. Nevertheless we found out that ¢ of Si and
SiO, at room temperature correspond to 712 and 680-730 J kg K1, respectively.?16217 Since
the two values are almost the same, if we assume that no significant deviation in the ratio
between them occurs when the temperature is increased up to 615 °C, it seems reasonable
to think that there will not be significant differences between the specific heat of the two
materials at the conditions of growth.

Regarding the thermal conductivity, to the best of our knowledge there are no available
data concerning k of SiO, at 600 °C. However, if we refer to the work of Yamane et al®'8, who
measured this properties for layers of SiO, with different thickness at room conditions, we
can see that the thermal conductivity decreases dramatically as the thickness is reduced,
passing from about 1.4 W m™ K for bulk SiO> to about 0.55 W m™ K* for 25 nm-thick SiO>
layers. It is therefore reasonable to assume that for our 20 nm-thick SiO, mask, the value of
thermal conductivity could be very similar. On the contrary, considering that our Si samples
are 1 cm x 1 cm large and about 0.3 um thick, we can assume that their thermal conductivity
corresponds to that of bulk Si, i.e. about 160 W m™ K at room temperature.?!® Therefore,
the difference in thermal conductivity between Si and SiO, at room temperature is as big as
four orders of magnitude, thus determining a not negligible difference between the k/pc
terms of Si and SiO;. As a consequence, assuming that such a ratio between the thermal
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conductivities of the two materials is maintained also at the NW growth temperature
(around 600°C), the hypothesis of a difference in temperature between Si and SiO; after
thermal pre-treatment is not precluded (in particular with SiO, maintaining a higher
temperature than Si).

In such case, if the difference in temperature between mask and substrate is the factor
which determines a higher verticality, we would expect the cooling time to play an
important influence on the vertical yield, because the more we wait and the lower the
temperature gap between SiO; and Si should become, thus causing a lower verticality. In
order to verify this hypothesis, we decided to perform the growth on three different samples
(grown on substrates patterned after etching the epi-ready oxide) adopting the same
experimental conditions as in Figure 5.19, i.e. heating up to 625 °C and stabilization for 15
min, cooling and growth at 610 °C with standard parameters after the deposition of 108 MLs
Ga at 0.5 ML/sec, but with cooling time equal to 2, 5 and 10 min. The purpose was to
compare these results with those obtained for the growth performed in the same conditions
but without thermal pre-treatment.

SEM images of the four samples in question are shown in Figure 5.26 and the evolution of
the vertical yield with the cooling time tcooling is reported in Figure 5.27. Our expectation was
to observe the lowest vertical yield for the sample without thermal pre-treatment, a similar
or higher verticality for the one cooled in 10 min (depending on whether this time is enough
or not to still conserve some significant difference in temperature between Si and SiO;), a
still higher vertical rate for 5 min cooling and the highest one in the 2 min case, where the
difference in temperature is supposed to be the highest.
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Figure 5.26. SEM images of GaAs NWs grown on INL patterned substrates: (a) without thermal pre-

treatment, and with thermal pre-treatment and tcooiing €qual to (b) 2 min, (c) 5 min and (d) 10 min. All
images came from patterned area corresponding to line 1 and column one, as marked in Figure 5.16.
The percentage of vertical NWs is reported in yellow for each case. The white scale bars correspond
to 2 um.

It can thus be noticed that our expectations are entirely confirmed: the sample which was
not pre-treated gives the lowest vertical yield, with values almost equal to or slightly lower
than the sample pre-treated with 10 min cooling; the sample cooled in 5 min provides higher
vertical yields than the previous cases, but as expected it is the sample undergone 2 min
cooling which shows the highest verticality, in a range which is about 75-85 % depending on
the patterned zone.

In terms of vertical yield, the results achieved with 2 min cooling is not as good as those
one observed on C2N patterned substrates, but still very promising, especially because it
includes some margins of improvement, for example by producing a cleaner Si/SiO; interface
thanks to the procedure of Madiomanana et al,?°> which as above-mentioned is habitually
employed by our partners at C2N but which had not been yet introduced at INL when these
patterned substrates were fabricated. Also, we might still be able to increase the verticality
by further reducing the cooling time.
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Figure 5.27. Vertical NW vyield as a function of the cooling time. The red dashed line corresponds to
the yield obtained without thermal pre-treatment (62 %).

Ultimately, the agreement between our previsions and these experimental data is
encouraging and gives us hope that we have found the right track to explain what the role of
the thermal pre-treatment actually consists of. Of course, these results constitute only a
preliminary study and our hypothesis to explain the phenomenon are still assumptions
which should be validated. As a matter of fact, we still have to verify our assumption that the
thermal conductivities of the two materials, as well as that their specific heats, maintain at
610 °C the same relationship observed at room temperature. Also, we should still define for
which physical effect a possible difference in temperature between Si and SiO> may induce a
high vertical yield. Nevertheless, we think that the hypothesis formulated so far may provide
a proper starting point, and we hope to be able to solve the problem with our future
research in this regard, involving further computational simulations to be carried out at INL
by A. Danescu.
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5.6 Conclusion

In this chapter we have treated the growth of Ga-assisted NWs on patterned substrates.
The preliminary step before the NW growth consisted in the optimization of the cell
parameters through numerical simulations by our partners at IMEP-LAHC. The simulations
revealed that the most proper parameters for our purpose are a pitch of 550 nm and a NW
diameter and length of 330 nm and 1.5 um, respectively, which can theoretically provide a
photoconversion efficiency up to 27.6 % with Voc = 1.85 V, Jsc = 17.1 mA/cm? and FF = 0.87.

Subsequently, we focused our efforts on the growth of vertical NWs on patterned
substrates. For such a purpose, we began our study from the pre-deposition of Ga to form
ordered arrays of droplets, and the procedure adopted provided excellent results in terms of
selectivity and uniformity. By comparing the volume of the droplets with the amount of Ga
deposited into the holes, we tend to believe that part of the Ga desorbs from the droplets so
as to let them in an equilibrium state with a contact angle O = 50°.

Having obtained satisfactory results with Ga pre-deposition, we then committed to
achieve regular arrays of, firstly, GaAs NWs, and secondly, p-GaAs/p.i.n-Alp2GaosAs
core/shell NWs with high vertical yields on patterned substrates provided by C2N. This task
was eventually fulfilled thanks to a procedure including a thermal pre-treatment at
temperature 15°C higher than that one for the Ga deposition and NW growth (for example,
at 625 °C for a NW growth at 610 °C). Despite the short time of the pre-treatment and the
narrow difference in temperature, this step has proved to be of crucial importance, leading
to verticality rate up to 90 % over 0.9 x 0.9 cm? patterned areas. The as-grown p-GaAs/p.i.n-
Alp2GapsAs core/shell NWs were characterized by EBIC: the results have shown that these
NWs are potential building blocks for a TSC, thus confirming the performances already
observed in Chapter 4 on their counterparts grown on epi-ready Si substrates.

After that, we aimed to reproduce these results on patterned substrates prepared at INL,
both to develop our own know-how and to test the reproducibility of our procedure: these
series of experiments have shown that the cooling time after the thermal pre-treatment is a
very important factor, since the faster is the cooling, the higher is the vertical yield. For the
moment, we are inclined to attribute this effect to a possible difference in temperature
between the Si substrate and the SiO, mask, which may persist after the thermal pre-
treatment, during the formation of the Ga droplets and the NW nucleation. However,
further analyses are necessary to verify our hypothesis.
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6 The fabrication of nanowires-based PV cells: preliminary
results

6.1 Introduction

Although the work of this thesis focuses mainly on the MBE growth and characterization
of NWs, it was also addressed to develop a proper fabrication protocol so as to achieve well
performing NW-based PV cells. In this chapter we present therefore some preliminary
results concerning such topic. The first section of this chapter summarizes schematically the
work flow that should finally allow us to fabricate the targeted TSC. The second section is
devoted to the experimental procedure employed to prepare the Si substrate for the bottom
cell of the TSC. Subsequently, we present our study about the top cell manufacturing by
following two main guidelines: the encapsulation and the top-contacting of NWs. The third
section reports our preliminary study of NW encapsulation by hydrogen silsesquioxane
(HSQ), the reason of its failure, the proposed alternative with benzocyclobutene (BCB) and
the removal of the BCB in excess by reactive ion etching (RIE) to expose the NW tips. Then,
the fourth section assesses the top contact issues, and shows the results obtained with the
deposition of ITO on the NWs.

6.2 Development of the TSC architecture

The complete process of TSC fabrication can be summarized in the following sequence:

Si substrate is (111) oriented and p-type
doped with B (1-5 Q:cm)
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Thermal diffusion “Lydop” from POCI3
source (25 min at 840 °C)

Si n++

Back Surface Field formation by P-RTD
with Boron SOD (30 sec at 1000°C)

Si n++

BSF Si p+

Tunnel junction formation by using P-
RTD with Boron SOD (cf. Paragraph 6.4)

Si n++

BSF Si p+

SiO2 deposition by PECVD at C2N and
mask patterning by EBL (cf. Chapter 5,
Paragraph 5.3 and 5.4)

Si n++

BSF Si p+

[uny
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NW growth:
p-GaAs core
Ga droplet consumption (i-GaAs)

p-Alo.2Gao.sAs shell
Si n++

i-Alo.2Gao.sAs shell
n-Alo.2Gao sAs shell
AlosIng sP Passivation layer

BSF Si p+

P N
Encapsulation
Layer
(BCB)
Encapsulation of NWs with BCB

Si n++

BSF Si p+

PN

Encapsulation
Layer
(BCB)

RIE to eliminate BCB in excess and expose

NW tips

—

Si n++

BSF Si p+

[uny
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Etching of AloslngsP passivation layer
with HCl to expose the top of the PV-
active region

Encapsulation
Layer
(BCB)

BSF Si p+

Deposition of ITO by sputtering to
contact the NW top

Encapsulation
Layer
(BCB)

BSF Si p+

Si n++

Deposition of back and front Al contacts
+

Contacts annealing

Encapsulation
Layer
(BCB)
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Whereas the issues concerning the NW growth for the top cell have already been treated
in the previous chapters, here below we will expose the rest of the operations necessary to
obtain a TSC, i.e. the fabrication of the Si bottom cell, the NW encapsulation and finally their
top contacting.

6.3 Fabrication of the Si bottom cell

All the results presented so far in this thesis, concerning the growth and encapsulation of
NWs, might be employed in the fabrication of NWs-based PV cell regardless of the number
of junctions in the device. However, in order to obtain a NWs-based TSC, it is necessary to
develop also a proper Si bottom cell. Therefore, in this section we will show some
preliminary results in this sense, and conclude by summarizing the whole TSC manufacturing
process we will adopt in the light of the skills acquired during this work and of the
experimental results reported in this and in the previous chapters.

Our 2-terminal TSC requires an electrical coupling between the 2 sub-cells without
preventing transmission of infrared light to the Si bottom cell. This contact should not be
affected by thermal budget of the top cell fabrication process (610°C during 20-30 min under
UHV). Therefore the Esaki tunnel junction consisting of two highly doped and very thin n-
type and p-type regions was selected in the frame of the HETONAN project. This tunnel
diode is implemented within the Si bottom cell. In such a diode, the electrons move from the
degenerated n-type region to the degenerated p-type region via tunneling process, enabling
electrical coupling with minimal parasitic absorption. INL developed a low-cost technique
combining spin-on dopant (SOD) sources and rapid thermal annealing (RTA) to realize 2
successive diffusion of p- and n-type dopants (or vice versa). Also, as the standard n**-doped
emitter of the Si solar cell has doping level higher than 102° cm™ near the surface, it is
possible to use only one additional B diffusion to realize an efficient structure. The main
difficulty is to achieve very high doping concentrations with very sharp doping transitions
considering the compensation of the two dopants inherent to this method.

Spin-on dopants (SOD) containing B cannot be deposited directly on the n**-doped
emitter because, after annealing, this can generate a residual layer of boron silicide at the
wafer surface, which is difficult to remove as it is insoluble in HF solution. To avoid this
problem, we use proximity rapid thermal diffusion (P-RTD).?2° The dopant source consists in
the SOD layer, which is deposited on a Si wafer used as support; this is stacked in proximity
to the Si target wafer, from which it is separated by 300 um thick Si spacers, as shown on
Figure 6.1. When heating under N, the dopants go across the short space from the source
wafer to the target wafer and diffuse through the silicon; this method allows also a better
control of the junction depth.
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Figure 6.1. Experimental set-up of (a) SOD and (b) P-RTD.

Source wafers were cleaned by using 5% HF solution followed by a 15 min treatment in
H2S04/H>0; solution, so as to form a chemical oxide on the Si surface to improve the stability
of the SOD, which is deposited in the next step. Emulsitone Borofilm 100, the SOD source,
was spun onto the source wafers at 3000 rpm during 30 sec. Subsequently, the wafers were
baked at 200°C in air for 10 min. The P-RTD was then performed under dry air flow at
atmospheric pressure in an ADDAX RTA furnace. The temperature peak adopted was in the
980-1020°C range with a 50-100°C/s heating ramp.?%!

In a P-RTD processes the diffusion relies heavily on the temperature and on the diffusion
time to which the wafer is subject at the peak temperature; in particular, if the temperature
is too high or the time is too long, the concentration profile runs the risk to be not abrupt,
therefore not leading to a shallow junction. On the contrary, if the temperature is too low,
the concentration of dopants might not be high enough to have a good tunnel junction.
Moreover, the combination of two subsequent processes lets the second dopant
compensate the first one in the proximity of the surface.

The resulting doping profiles are measured by means of electrochemical capacitance-
voltage (ECV - WEP-CVP21). Unlike SIMS measurements which give total concentration, the
ECV profile represents the concentration of only electrically active dopants within Si, thus
giving an accurate measurement of the junction depth.???2 During measurements, Si is slowly
etched with a standard 0.1M NH4HF; solution.

The ECV profiles before and after B thermal diffusion are reported in Figure 6.2. Figure
6.2(a) displays the graphic of the carrier concentration as a function of the depth for the
original n**-doped emitter (P doped obtained by standard POCIs; thermal diffusion at 840 °C).
Figure 6.2(b) shows the equivalent graphic for the resulting profiles of both p and n type
regions of the tunnel junction. It can be noticed that both regions are degenerated with an
active dopant concentrations above 10-2° cm3, the carrier concentration being about 2-10%°
cm (p-type) and about 1.2:10%° cm3 (n-type). Besides, it can be observed that the p-type
region is very shallow (50 nm), and that a depletion region of only 3 nm is expected. All these
characteristics are suitable to form a high-quality tunnel junction.
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Figure 6.2. Carrier concentrations as a function of the depth for (a) the original phosphorus n**-doped
emitter and (b) for a sample with tunnel junction.

In order to simulate the thermal budget of the GaAs/Alo2GaosAs core/shell NWs epitaxy
process, we tested two samples with shallow P- and B-doped structures at 610°C during 30
min under UHV. We did not observe any modification of the profiles for the B-doped
structure, while in the P-doped one only a slight decrease in concentration was found near
the surface, probably due to exo-diffusion. Since in our real structures the P-doped region
will not be near the surface, we can assume that the top cell fabrication process will not
affect the behavior of the tunnel diode.

After the implementation of the tunnel structure, the samples were sent to C2N for the
deposition and patterning of the SiO2 mask.

6.4 Preliminary results on NW encapsulation

The idea of encapsulating the NWs with HSQ came from the know-how already acquired
by our group on this compound.

In order to provide mechanical stability to the cell, NWs must be properly embedded in a
transparent encapsulation layer. This can be realized by spin-coating, depositing a droplet of
precursor on the substrate where NWs were grown and subjecting the sample to rotation so
as to spread the precursor uniformly over the surface. Adjusting the parameters of
acceleration, rotation speed and time allows gaining control on the overall thickness of the
encapsulating layer. Spin-coaters generally consist of rotating chucks located into a basin
where samples are placed and fixed thanks to a vacuum pump. Since rotational acceleration
and speed can vary up to several thousand rounds per minute (rpm), the final thickness of
the encapsulating layer obtained with a single drop of precursor on a sample with smooth
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surfaces can vary around several hundreds of nm. In the presence of NWs, on the contrary,
the thickness obtained with a single drop of precursor increases with the diameter and
density of the NWs, usually being between 0.5 and 2 um, and changes in these two
parameters can have dramatic consequences on the final layer thickness.

We therefore started a series of experiments of encapsulation and etch using as sacrificial
patterned samples those ones which had provided low vertical rates, the growth protocol
not including yet thermal pre-treatment at that time. Generally speaking, when it comes to
the deposition and curing of HSQ on small surfaces as in the case of our 1 cm x 1 cm
samples, the procedure consists in the deposition of only one droplet of liquid precursor,
followed by spin coating and bake; in particular, the function of the bake is to thermally
anneal HSQ so as to convert it into SiO,, i.e. the final encapsulation material. The first
attempts were carried out on two samples (A and B) treated with the parameters reported
in Table 6.1, performing the bake in air on a hot plate for a short time (1 min); the procedure
was performed twice on sample B, so as to compensate the high spin coating acceleration
and speed for obtaining a thicker encapsulation layer.

Sample Spin coating | Acceleration | Spin coating Baking Baking time
speed (rpm/sec) time temperature (sec)
(rpm) (sec) (°C)

A 1500 1500 60 300 60

B 3000 3000 60 300 60

Table 6.1. HSQ spin coating and baking parameters employed for the first series of samples.

SEM images of samples A and B after HSQ deposition are reported in Figure 6.3(a, b),
respectively. In both cases the NW tips emerge from the HSQ layer: considering that the NW
length are 1.4 £+ 0.1 um and 2.2 + 0.1 um, respectively, based on the length of the emerging
part of the NWs, the HSQ thickness can be estimated around 1.1 and 1.5 um, respectively. It
can be noticed that in the case of sample A some cracks are already present on the surface
of the encapsulation layer (Figure 6.3(a)), whereas in the case of sample B a dark/bright
contrast is observable on the surface, thus suggesting the presence of density
inhomogeneities. After the deposition, the sample A was treated with 1% HF solution for 40
sec so as to reduce the thickness of the layer and remove the silica from the NW tips (Figure
6.3(c)). It can be noticed that such a treatment has a dramatic effect on the encapsulation
layer, originating holes around the NWs. In order to prevent this effect, sample B was
exposed to a lower etching time of 7 sec in 1% HF (Figure 6.3(d)): yet smaller than in the
previous case, the holes are still present around the NWs. Moreover, it can be also noticed
that a 7 sec etch is not enough to remove all the materials from the NWs, some residues

being still present on their tips.
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Figure 6.3. 45°-tilted SEM images of (a) sample A after HSQ deposition and bake, (b) sample B after
HSQ deposition and bake, (c) sample A after 40 sec etch in 1% HF solution, (d) sample B after 7 sec
etch. The scale bars correspond to 500 nm.

The presence of holes around the NWs after etching shows that the curing procedure of
the encapsulating material was not effective enough. In order to compensate for this failure,
a second series of three samples was prepared with a different procedure; this consists of
HSQ deposition performed with the same spin coating parameters already employed for
sample A, plus 20 min baking at 150 °C on hot plate in air, 60 min more baking at 350 °C, and
eventually either 75 sec Rapid Thermal Annealing (RTA) in N, atmosphere at 600 °C (sample
C) or 60 min at 500 °C (sample D) or 60 min annealing at 600 °C, also in N, atmosphere
(sample E). SEM images of these samples after deposition and baking are reported in Figure
6.4(a, b, c), respectively. It can thus be noticed that, contrary to the two other samples,
sample E already shows cracks in the encapsulating layer, likely because of the severe baking
procedure adopted; for such a reason, sample E was not further investigated, whereas
sample C and D were etched in 1% HF for 10 sec each so as to verify whether the formation
of holes around the NWs could be prevented.
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Figure 6.4. 45°-tilted SEM images of the samples C (a), D (b) and E (c) after HSQ deposition and
baking. The white scale bars correspond to 1 um.

SEM images of sample C and D after 10 sec 1% HF etch are reported in Figure 6.5: it is
evident that despite the harder baking conditions, a uniform etch of the encapsulating layer
could not be achieved. As a matter of fact, in the case of sample C, holes preferentially
formed around the NWs, whereas on sample D large part of the silica has been etched.
However, this is not the only drawback of this procedure: in fact, it seems that silica was
etched preferentially from the layer but not from the NWs, since in both cases some NWs
still present silica on their profile (marked with red arrows). Moreover, such a treatment also
changed the morphology of some NWSs, now appearing as crooked (marked in yellow),
whereas before HSQ deposition all NWs, either vertical or tilted, were always straight.
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Figure 6.5. 45°-tilted SEM images of (a) sample C and (b) sample D, after 10 sec etch in 1% HF
solution. The white scale bars corresponds to 500 nm.

This change of shape is likely attributed to the strain induced by silica on the NWs as a
result of a too severe thermal annealing: indeed, it was already observed that in the case of
NWs on thin lamellae (cf. Chapter 5, Paragraph 5.3) the strain originating in HSQ
encapsulation layer could extend to the NWs and eventually fracture them (Figure 6.6).

d) S — )

Figure 6.6: TEM images on thin lamellae of HSQ-encapsulated NWs (cf. Chapter 5, Paragraph 5.3).
The white scale bars correspond to 100 nm.

Following these results, we decided to prepare one more sample F adopting the same
procedure for C, D, E, although in this case only 20 min baking at 150 °C on hot plate in air
plus 60 more min at 350 °C were performed. Subsequently, sample F was treated with 1% HF
for different times to monitor the course of the etching: results are reported in Figure 6.7. As
it can be seen, NWs were completely covered after HSQ deposition; after 5 sec etching some
tips begin to appear, however after 20 sec silica is already over-etched and holes form
around the NWs.
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Figure 6.7. 45°-tilted SEM images of (a) sample F after HSQ deposition and baking, (b) after 5 sec etch
in 1% HF solution and (c) after 20 sec etch. The yellow values in each image corresponds to the
etching time. The white scale bars correspond to 1 um in (a) and to 500 nm in (b, c).

Following this latest failure we have come to the conclusion that HSQ is not a good
encapsulating material for our purpose. As a consequence, we decided to replace it by
benzocyclobutene (BCB), which acts as a stable, transparent encapsulating material without
damaging the NWSs. For these reasons, it has already been widely employed in the
fabrication of PV devices based on ordered arrays of NWs:7678:82,86,87,90-92,223 the gptimisation
of BCB deposition, baking and etching has already been undertaken in our group and is still
in progress. A spin coating procedure based on the deposition of BCB and spinning at 10000
rom for 77 sec with acceleration of 1000 rpm/sec was adopted. This was followed by a
thermal curing procedure consisting of a first soft bake in air at 100 °C for 90 sec, followed
by a second bake in N, atmosphere where the sample was gradually heat up to 250 °C and
kept at this temperature for one hour. The results of such a procedure on patterned
substrates with high vertical yield (80-90%) of GaAs/Aly.2Gao.sAs core/shell NWs are reported
in Figure 6.8(a); the encapsulation layer shows a quite uniform thickness, is crack-free even
after the thermal treatment at 250 °C and exposes only the very tips of the NWs.
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In order to remove the BCB in excess from the NW tips and to expose them sufficiently
for the contact procedure, this sample was then treated by RIE for 30 sec (with 20 sscm O3, 5
sscm SFe, pressure = 100 mTorr and RF power = 50 W). The results of this treatment are
reported in Figure 6.8(b): it can be noticed that all BCB were removed from the tips of the
NWs, which are now partially exposed for a length of 300 + 38 nm. Considering such value as
sufficient for our purpose, we decided to introduce this etching procedure in the final
fabrication process.

Figure 6.8. SEM image (45°-tilted) of (a) GaAs/Alo2GaosAs core/shell NWs encapsulated with a BCB
layer after baking at 250 °C, and (b) the same sample after 30 sec of RIE. The white scale bars
correspond to 500 nm.

All HSQ and BCB depositions and RIE treatments here reported were carried out at INL by
X. Li. We consider such results very encouraging and expect them to be a good starting point
for the further development of our PV device.

6.5 ITO deposition on NWs by sputtering

As already mentioned, in order to provide an electrical contact to the top sub-cell after
encapsulation, it is necessary to locally remove the passivation shell and deposit ITO on the
exposed PV-active region. A preliminary study was carried out in this regard to verify the
response of the NWs to sputtering deposition.

Sputtering deposition is a physical vapour deposition (PVD) technique largely adopted to
form thin layers of materials on substrates. The process is performed thanks to a plasma,
whose ions are electrically accelerated towards a source material (also called target) so as to
cause the emission of ions, atoms or molecular fragments: these eventually deposit on the
surface of the sample forming the thin layer in question.
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One of the plasma precursors most widely employed is Ar, or mixes of Ar and other gases.
The most basic sputter deposition techniques is surely the direct current (DC) sputtering;
here the gas pressure in the deposition chamber usually ranges from 1 to 100 mTorr, while a
voltage from 2 to 5 kV is applied between the target (cathode) and the substrate (anode), so
as to direct the ions towards the first one (Figure 6.9). When plasma/target collisions occur,
the sputtering of target atoms is the result of a momentum transfer process involving the
first atomic layers. About 95 % of the incident energy is retained by the target as heat
(making cooling necessary) while about 5 % of it is carried off by the expelled atoms, with
energy between 5 and 100 eV. These pass through the plasma before deposition, where they
may collide with ions, electrons and precursor atoms either causing back-side chemical
reactions, or being ionized or just loosing part of their energy which will eventually be
reduced to 1-10 eV. Nevertheless, part of them will finally reach the substrate and deposit
on it. The species eventually impinging on the substrate surface are not only target atoms
and ions, but also electrons and plasma precursor atoms, which may be incorporated in the
layer, especially when high pressures of precursors are employed: hence, the use of
chemical inert Ar to obtain plasma.

heating/cooling | | Substrate bias
I | —1

. Anode (substrate) ]

afew shutter

cooling

Figure 6.9. Schematics of a DC sputtering setup.

The final composition of a deposited layer results very similar to that one of the alloy in
the target: this characteristic distinguishes sputtering from evaporation, thus making the
first technique generally preferred to the second one.

The principle of DC sputtering has been above summarized: other sputtering techniques
largely adopted in the fabrication of thin films are radio frequency (RF) sputtering and
magnetron sputtering. RF sputtering is usually employed to overcome the limitations caused
to DC sputtering by targets of insulating materials, where positive ions tends to accumulate
on the target surface thus preventing other collisions: in order to prevent this problem, the
voltage between anode and cathode can be alternated so as to eliminate the excess of
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positive charges on the target. Magnetron sputtering on the contrary is a different approach
which does not define the voltage set between anode and cathode; in fact it can be used
either in DC or RF mode. In this case, electric and magnetic fields are used to trap electrons
near the cathode in order to increase the probability of ionizing the precursors, so that it is
possible to achieve higher sputter rate at lower pressures, thus increasing the overall
efficiency of the process.

The depositions performed during this thesis were carried out at INL under the
supervision of R. Mazurczyk with an AC450 sputter by Alliance Concept.

Preliminary depositions were performed on two different kind of structures: GaAs NWs
grown for 10 min with standard procedure (Figure 6.10(a)) and GaAs/Aly2GaosAs/GaAs
core/shell NWs, obtained growing the core for 10 min with standard procedure, consuming
the Ga droplet under As flux (fas = 4.05 ML/sec) in 4 min while cooling to 460 °C, and finally
depositing Alo.2Gao.sAs (with Fa = 0.13 ML/sec) and GaAs at the same temperature for 20 and
10 min respectively (Figure 6.10(b)).

ITO deposition was performed on these two samples by magnetron sputtering at room
temperature, for a nominal layer thickness equal to 250 nm. After the deposition, the
samples were baked at 250 °C for 30 min under N flow. SEM images of the NWs after the
deposition are reported in Figure 6.10(c, d). It can be observed that in both cases a
conformal coating was achieved, this fact being encouraging since it introduces the
possibility of forming a uniform contact layer for the top cell on the NW tips. Table 6.2
reports a comparison of the size parameters of NWs before and after the deposition; it can
be noticed that, although the nominal thickness of the deposited ITO is 250 nm, the
diameter of the structures increased only by 115 nm for GaAs NWs and by 148 nm for the
core/shell ones, whereas their length increased by 0.3 and 0.6 um, respectively, thus
showing a higher deposition rate along the axial direction.
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Figure 6.10. 45°-tilted SEM images of (a) GaAs NWs and (b) core/shell NWs before ITO deposition,
and of (c) GaAs NWs and (d) core/shell NWs after ITO deposition by magnetron sputtering and
thermal annealing at 250 °C under N, flow for 30 min. The white scale bars correspond to 500 nm.

Sample Diameter Diameter Length Length after
before ITO after ITO before ITO ITO
(nm) (nm) (nm) (nm)
GaAs NWs 739 188+ 18 1.0£0.2 1.3+£0.2
GaAs/Alp2Gao.sAs/GaAs 210+ 17 358 + 28 41+15 47+1.2
NWs

Table 6.2. Diameter and length of GaAs NWs and GaAs/AloGaosAs/GaAs core/shell NWs before and
after ITO deposition by magnetron sputtering and thermal annealing at 250 °C under N2 flow for 30
min.

In the case of these samples, ITO was deposited directly on the NW surface. Nevertheless,
it is well known that depositing a thin film of metal on the structure before the transparent
conductive oxide can significantly enhance the electrical conductivity at the interface, thus
forming a good ohmic contact at the top. The benefits of such a procedure were firstly
demonstrated by Patkar et al with the deposition of Ag and Ti/Au on doped GaAs layers??*
and by Zhang et al with the deposition of In on GaAs NWs,%?%°> then eventually adopted by
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Mariani et al®?> and Boulanger et al®® for the fabrication of NWs-based PV devices. In order to
verify whether we can adopt the same technique to improve the ohmic contact of our NWs,
four-probe measurements were carried out on two samples constituted of a semi-insulating
GaAs substrates on which 1 um of n-GaAs (8:10* cm3) and 225 nm of ITO were deposited
and annealed in the same conditions reported for the NWs. In one case, an additional thin
layer of In (25 nm) was also inserted between n-GaAs and ITO, thus determining conditions
that are similar to those ones employed by Zhang et al (25 nm In, 500 nm ITO)??°> and by
Boulanger et al (25 nm In, 250 nm ITO).° The electrical measurements showed a significant
reduction of the sheet resistance thanks to the In thin film, the values decreasing from 16 to
6 Q/o. For this reason we decided to employ this technique to contact our encapsulated
NWs, also considering that such an approach should not affect significantly the light
absorption from them.?%22> Therefore, after 25 sec of wet etching in 10 % HCI solution to
remove the AloslnosP passivation shell and expose the n-AlGaAs shell, we deposited 25 nm
of In by evaporator on the BCB-encapsulated NWs already reported in Figure 6.8(b).
Subsequently, 100 nm of ITO were sputtered on the sample (optimal value according to the
simulations reported in Chapter 5, Paragraph 5.2), which was then annealed at 250 °C under
N> for 4 min, following Boulanger’s procedure.®® The result of such a treatment is illustrated
in Figure 6.11. Contrary to what obtained with the deposition of ITO directly on the NWs
shown in Figure 6.10 (c, d), in this case, ITO is extremely granular. This can be likely
attributed to the In layer, which was deposited by evaporator, whereas its sputtered
counterpart would be more uniform.’® Considering that, we have no chance in our
laboratory to deposit In by sputtering, and that such a granular ITO would affect the
optoelectronic properties of the cell, we eventually decided to adopt only ITO as top contact
of the NWs in the final process. Since the sheet resistance for this material only is quite low
(16 Q/o), this should not decrease the performances of our device.
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Figure 6.11. SEM image (45°-tilted) of the sample with BCB-encapsulated NWs (already shown in
Figure 6.8(b)) after the deposition of 25 nm In by evaporator, 100 nm of ITO by sputtering, and after
4 min of thermal annealing at 250 °C under N,. The white scale bar corresponds to 500 nm.
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6.6 Conclusion

In this chapter we faced the issues of developing the process to fabricate our TSC after
the NW growth.

Regarding the fabrication of the Si bottom cell, we developed a protocol based on SOD
and P-RTD to obtain substrate with a tunnel junction on the surface. As shown by ECV
analyses, the doping profile results to be resisting to the NW growth temperature and time.

Concerning the NW encapsulation, we ascertained that HSQ is not a suitable material due
to the presence of post-baking cracks and strong strains, which eventually damage the NWs.
For this reason we adopted BCB as encapsulation material, obtaining good preliminary
results.

Promising preliminary results were collected also in the case of the NW top contacting,
with conformal depositions of ITO obtained by sputtering. Moreover, 4-probe
measurements showed good conductivity in both cases of ITO and In-ITO thin films: the
latter ones in particular showed very low sheet resistances. However, due to the granular
aspect of the ITO films deposited on evaporator-deposited In/NWs, which eventually will
affect the performances of the cells, only the ITO deposition by sputtering directly on the
NWs will be introduced in the final process.

Ultimately, based on the results reported in this chapter and in the previous ones, we can
say that we are now close to the realization of the targeted TSC.

179



180



Conclusion

In this PhD thesis we addressed the issue of the use of NWs to obtain monolithical
integration of IlI-V semiconductors on Si and develop a IlI-V NWs-based Tandem Solar Cell.
We have focused on the MBE growth on Si substrates of self-assisted p-i-n core/shell
Alp2Gao.gAs-based heterostructured NWs. In order to achieve such an objective, we have
devoted a great effort to optimise the NW growth for obtaining high vertical NW yieds on
patterned Si(111) substrates. First results have been also obtained on the cell manufacturing
process.

Regarding NWs, we initially focused our attention on the self-assisted growth of GaAs
NWs on epi-ready Si(111) substrates as a propaedeutic step towards the development of our
structures. We have firstly verifyied the effects of the growth temperature and of the Ga
pre-deposition on the NW growth and defined an optimal protocol. Then, we committed to
analysing the impact of the incidence angle of the Ga flux with the normal direction to the
substrate, on the NW growth kinetic, taking advantage of the fact that our reactor is
provided with two Ga cells with different incidence angles. The results put in evidence how
different incidence angles may have dramatic effects on the NW growth, influencing heavily
the droplet shape and thus the NW length and diameter, as a function of the growth time. In
order to better understand the physical phenomena behind the experimental results, a
model was developed and numerical simulations were performed by A. Danescu from our
group. These highlighted that the growth kinetic and morphology of the NWs may strongly
depend on the incidence angle of the Ga flux insofar as the amount of Ga atoms supplying
the Ga droplets can change their volume and shape. This modifies the capture surface of As
and, consequently, the axial growth rate. Such a result is quite significant, since it introduces
the possibility of achieving higher control on the droplet size and shape, and consequently
on the NW dimensions, only by the way of the incidence angle of the Ga flux. This capacity is
potentially useful for the fine tuning of NW morphology and crystalline structure.

Once optimized and carefully analysed the growth of self-assisted GaAs NWs, we
committed to transfer our know-how to the growth of self-assisted Alp2GapsAs NWs.
However, all our attempts in this sense failed, either by direct or by “GaAs-seeded” growth.
This failure is likely attributable to two reasons: 1- in the case of direct growth, to the
oxidation of Al on the SiO; surface, which probably inhibits the Ga diffusion on the substrate
and thus the Ga alimentation of the Ga droplets necessary to assist the VLS growth, 2- in the
case of “seeded” growth, to the formation of AlxGaixAs on the NW facets which, in the same
way, may reduce the diffusion of Ga adatoms causing progressive shrinkage (and eventually
consumption) of droplets. In order to overcome these drawbacks, we proposed an
alternative configuration consisting of starting the NW growth with a p-GaAs core before the
active p.i.n-Alp.2GaosAs shell. After studying the impact of the p-doping level in the GaAs core
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and of the droplet consumption on the NW morphology, we firstly grow p-n GaAs core/shell
NWs on epi-ready Si substrates. Their structural, optoelectronic and electronic properties
were investigated by TEM, PL and EBIC, respectively. In particular, the EBIC analysis
(performed at C2N) showed a good diodic behaviour from the NWs with a homogeneous
collection of carriers on their entire length, characteristics which make these NWs potential
building blocks of a PV device.

Reassured by these positive results, we continued our research focusing on the ultimate
NW structure for our TSC, i.e. p-GaAs/p.i.n.-Alp.2Gao.sAs core/shell NWs also grown, in a first
step, on epi-ready Si substrates. These core/shell NWs were also characterized by TEM, PL
and EBIC: the latter one provided important results for us, confirming the good response of
the p-i-n junction, similar to what is already observed for the p-n GaAs core/shell NWs.
Subsequently, we focused our attention to define the optimal passivation shell for these
NWs; based on a PL study, we came to the conclusion that an AlgslngsP passivation shell is
the most suitable with the cell fabrication process.

Once optimized the protocol to obtain the core/shell NWs on epi-ready Si, we aimed to
transfer the acquired know-how onto patterned Si substrates, so as to finally achieve
ordered arrays of p-GaAs/p.i.n.-Alo2Gao.sAs core/shell NWs as PV-active structures of the top
cell. After a preliminary study of the selective deposition of Ga droplets, we performed many
growths on patterned substrates (prepared at C2N according to the optimal parameters
defined by the simulations carried out at IMEP-LAHC) to achieve high vertical yields of NWs.
After many failures we eventually developed a growth procedure, whose key-step consists in
a thermal pre-treatment right before the Ga deposition and NW growth, leading to high
vertical yields of NWs (80-90 %). The reproducibility and effectiveness of this procedure
were demonstrated on different substrates both for GaAs NWs and p-GaAs/p.i.n.-Alp2Gao.sAs
core/shell NWs. The latter ones were also characterized by EBIC, providing once again a
positive response which confirms their potential in the fabrication of tandem solar cells.
Subsequently, we committed to the growth of NWs on patterned substrates realised by our
group at INL, both to develop our own know-how in this field and to investigate the reasons
for which the thermal pre-treatment induces high vertical yields. Ultimately, we advanced
the hypothesis that the verticality might be induced by a possible temperature gradient
between the Si substrate and the SiO, mask persisting after the thermal pre-treatment.
However, it is not yet clear to us how this gradient would assist the growth of vertical NWs.
For this reason, we are planning to continue the research in this sense so as to provide
valuable hypotheses for explaining such results.

Finally, we dedicated part of our effort to the solar cell fabrication process as well. After
trying to encapsulate the NWs with inorganic compound HSQ and ascertaining the failures of
this approach due to the high strain induced by this compound on the NWs during the
annealing, we came to the conclusion that the polymer resine BCB is a more suitable
compound for this purpose. In fact, the preliminary results achieved with this compound are
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quite encouraging and suggest that the encapsulation task is almost fulfilled. Positive results
were achieved also for the etching of the AllnP passivation shell from the NW tips and for
the ITO deposition by sputtering, which are necessary steps to contact the NWs. In this case,
the deposited layers resulted morphologically uniform, while 4-probe measurements
performed on thin films of ITO and In-ITO showed the possibility to achieve good
conductivity. Ultimately, we also developed a protocol (based on SOD and P-RTD) to obtain
Si wafers including temperature resistant tunnel junctions: these kinds of substrates are very
important to our purpose, being expected to form the bottom cell of our TSC.

In conclusion, we can say that in the course of this thesis we developed the necessary
know-how to fabricate a TSC. All the building blocks are ready, and with the acquired
ensemble of skills and knowledges, the next step is to integrate all of them towards the
fabrication of a prototype. Based on the progress of the work, it can be expected to achieve
the realization of the TSC over the very next months, as targeted as part of the HETONAN

project.
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Annex 1: Characterization techniques

1.1 Transmission Electron Microscopy

Transmission Electron Microscopy (TEM) is a powerful characterization technique capable
of providing much information about morphology, crystal structure and composition of a
sample. Based on the transmission of an electron beam through the specimen and on its
diffraction, TEM can be described approximately as an electron scattering process which can
result in constructive or destructive interference according to the Bragg law:

2dsinY = nA

Where ¥ is the angle of incidence, d the distance between reticular planes, A the
wavelength of the electron beam and n an integer number.

For the process to occur, the sample must be sufficiently thin. In the case of bulk
materials, it is therefore necessary to reduce the thickness of the sample: this is a
destructive step carried out firstly mechanically and then by chemical etching or ion
bombardment. However, in the case of NWs there is no need for such a pre-treatment, their
size being already small enough to allow the transmission of electrons. These arrive on the
sample with an energy between 50 and 200 KeV, then originating the diffraction pattern.
Since the final result of a TEM analysis depends on the number of electrons transmitted
through the sample, the image obtained is presented in greyscale, in which the darker spots
are originated by those elements of the specimen having higher atomic number.

TEM facilities are kept under UHV so as to permit the electron beam to reach the sample
and include several parts and comparts, of which the main ones are the electron gun, a set
of magnetic lenses and electric plates to control the electron beam and focus it on the
specimen, a sample holder, a set of objective lenses to collect the diffracted electrons and
another one of intermediate lenses to magnify the image and project them on a fluorescent
screen. This one may consist either in a phosphorus screen or in a charge coupled device
(CCD), connected to an image recording system (Figure 1). Depending on the objective
lenses and slits adopted to collect the diffracted electrons, the instrument can be used to
collect either structural images or diffraction pattern from a selected area.



Electrongun | |

Condensor aperture

Specimen port Objective aperture

Objective lens

Diffraction lens
Intermediate aperlure

Intermediate lens

> o ‘ Projector lenses

Binoculars )
|
C /I - |
|ll \I
;"i | \ luorescent screen

] Image recording system

8 : L

Figure 1. Schematics of a TEM instrument.?

The energy of the electrons is directly related with their wavelength, thus determining
their ultimate resolution. Being the electron wavelengths much smaller than the atomic
separations in the solid (e.g. = 2.5 pm for electrons at 200 KeV), TEM can theoretically
achieve sub-atomic scale resolution, but in reality this value is precluded by the spherical
and chromatic aberrations of the magnetic lenses, so that the maximal resolution obtained
by TEM is about 0.5 A. However, the development of highly performing monochromators
and correctors has led to the improvement of the technique into the so-called High
Resolution Transmission Electron Microscopy (HR-TEM), which eventually permits to reach
point resolution below 0.5 A, allowing for direct imaging of the atomic structure of the
specimens.

TEM can be employed also to investigate the composition of a sample by Energy-
Dispersive X-ray spectroscopy (EDX). Bombarding the specimen with high-energy beam
expels core electrons of atoms and originates holes which are filled by electrons from the
shell. Because of the conservation of energy, electronic decays from high-energy states to
lower ones occur with the emission of photons, whose energy equals the difference



between the two states. The energy of these photons is typically in the x-ray range and
characteristic of the atomic number; therefore, collecting the photons as a function of their
wavelength allows investigating the elemental composition of the specimen. Moreover, the
fact of performing EDX analyses in TEM with finely focused electron beams (the diameter
being lower than 10 nm) and the possibility of collecting data in scanning mode allow also to
localise the elements detected in the sample, thus permitting to analyse not only the overall
composition but also the elemental distribution in a specimen. For these reasons, EDX is a
very powerful tool which can provide many relevant information, and concerning NWs this
technique is particularly suitable for studying the configuration of radial or axial
heterostructures.

All TEM/STEM and EDX analyses carried out in this thesis work were performed by G.
Patriarche at C2N on a FEl Titan Themis 200 working at 200 kV and equipped with a
geometrical aberration corrector on the probe (STEM mode). For the observations in STEM
mode, the probe resolution is about 0.1 nm and the probe current 70 pA. The EDX analysis
system consists of 4 detectors (to reach an angular solid angle of 0.8 steradian) and a Ceta
16M camera for the TEM images.

1.2 X-ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) is an important technique for surface analysis
based on collecting photoelectrons emitted from specimens irradiated by a beam of X-rays. A
schematic representation of a XPS equipment is reported in Figure 2. The instrumental setup
of XPS consists of an UHV chamber equipped with a focused monochromatic x-ray source,
electron collection lenses, electron energy detector and analyser.
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Figure 2. Schematics of a XPS setup.?



The whole process can be considered as an application of the photoelectric effect, so that
if the material is exposed to radiation with a certain frequency there is a finite probability that
photons are absorbed and electrons emitted from the sample. The kinetic energy of each of the
emitted photoelectrons Exin can be determined by using the equation:

Exin = hv — Ep — ¢

where hv is the radiation energy (with h as the Planck constant and v the frequency of the
photons), E, the electron binding energy and ¢s the work function dependent on both the
spectrometer and the material.

Photoelectrons can be originated both from core levels and from the valence band.
Knowing the kinetic energy of the emitted core level photoelectrons which is measured with
the spectrometer, it is possible to identify the various chemical elements of a sample. The
kinetic energy of photoelectrons being also influenced by the chemical environment of the
emitting atoms, XPS measurements allow to obtain information on it. Chemical shifts can be
guantitatively estimated taking into account factors such as local potentials, charge transfers
to nearby atoms and electronic correlation effects.

Photoelectrons generated in solids in the usual range of energies (250-1500 eV) have
mean free path around 0.8-1.5 nm before undergoing inelastic scattering and losing all
information related to their kinetic energy (Figure 3). Therefore, only those electrons
generated in the first atomic layers can be collected by the instrument, and this makes XPS
an extremely suitable technique for surface analysis.
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Figure 3. Inelastic mean free path of electrons as a function of kinetic energy.?

Concerning the measurements carried out in this work, our XPS chamber is equipped with a
focused monochromatic x-ray source Al Kq = 1486.6 eV and is connected in UHV to the MBE
reactor, thus allowing to perform in situ analysis after the growth preventing possible
surface contaminations from the outer atmosphere.
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1.3 Photoluminescence spectroscopy

Photoluminescence (PL) spectroscopy is widely used to investigate the optoelectronic
properties of semiconductors, and constitutes a non-invasive characterization process via
photonic excitation. The mechanism underlying PL is the formation of electron-hole pairs
from inter-band transitions caused by photo-excitation with radiations having higher energy
than the semiconductor band gap. The carrier separation is followed by electron-hole
radiative recombinations originating the PL. Recombinations may involve free carriers,
acceptors and/or donors, and free and bounded excitons. Information concerning the
material properties can be obtained by observing the energy, intensity and shape of the
various emission lines recorded and plot as a function of the energy. Typically, a PL setup
includes a light source, a system of focalisation lenses, a support for the sample consisting in
a liquid-helium cooled cryostat, a system of collection lenses, a monochromator and a
detector (Figure 4). Lasers in the UV or visible range are the most commonly used light
sources in PL, since they offer high brightness and monochromaticity.

The INL laboratory is provided with a PL equipment including a laser source with
wavelength equal to 532 nm. The sample can be inserted in a cryostat/heater system which
permits analysis in a very wide range of temperatures (10-300 K), while a pump keeps the
sample in vacuum (10°-107 Torr). A different configuration uses a laser source whose
wavelength is 515 nm: this can be used to perform time-resolved PL analysis (TRPL), which
eventually allows determining the average life time of the carriers.
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Figure 4. Schematics of a PL setup.*



1.4 Electron Beam Induced Current microscopy

Charge Collection Microscopy (CCM) is an ensemble of analytical techniques in which an
excitation source is used to scan the surface of an electrically-contacted sample and study
the spatial distribution of the electrical properties of semiconductor nanostructures, in a
process of current mapping which can detect both electrical inhomogeneities and
morphological failures. CCM employs an excitation source to generate a local excess of
carriers, which can be collected and measured in presence of an electric field. Generally
speaking, excitation sources can be both optical (laser) and electronic beams; in the second
case, the technique constitutes the so-called Electron Beam Induced Current (EBIC)
microscopy, which offers higher resolution compared to its optical counterpart, especially if
coupled with Scanning TEM (STEM) setup.

EBIC microscopy can therefore be defined as a probe-scanning technique for the
nanoscale investigation of an internal field. When the electron beam hits the sample, the
interaction between the electrons and the matter causes electron scattering within a
nanometric volume (the so-called interaction volume), as reported in Figure 5(a); similarly to
photons, the electrons into this volume have enough energy to excite electron/hole pairs
and, if an internal field is present, this will cause the drift of the excess carriers forming the
so-called induced current (Figure 5(b)), which can be eventually extracted into an external
circuit and measured.
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Figure 5. (a) Simulation of electron/matter interaction for an excitation beam accelerated at 2 kV
with current equal to 5 pA. (b) Schematics of the induced current generation.®

EBIC setups generally consist of an electron source, an electrical contact on the sample to
collect the induced current, and a bias/current amplifier, as shown in Figure 6. Since the
excitation source should be a scanning beam, most of devices usually employed for EBIC
analyses are nothing but an adaptation of scanning electron microscopy (SEM) instruments,
provided with the components for current measuring. This approach is extremely
convenient, the morphological images of the samples being important to the interpretation
of the EBIC map.



The instrument used to perform the analysis reported in this thesis is a Hitachi SU8000
with Gatan control system and Kleindiek PS4 as in situ electrical contact.

Electron beam

energy E=1-30 keV | SEM objective

Ensemble
Nanowire Mesa

Electron probe:

A - Bias + Current
nanometer size B \ amplifier

GPIB

PC

Figure 6. Schematics of an EBIC setup.®

EBIC microscopes allow characterizing both single NWs and NW arrays. In the first case,
the electrical contacts can be either fabricated by electron beam lithography on dispersed
NWs or obtained by direct contact with metal micro- or nano-manipulators, the latter option
being generally preferable since it does not require long preparation time and permits the
characterization on free-standing structures. In the second case, NW arrays can be
encapsulated and electrically contacted with transparent conductive oxides, such as ITO.

Thanks to the capacity of probing the electrical activity at the nanoscale, EBIC can give
important insight about core/shell radial junctions. For example, in the case of p-n core-shell
NW-based light emitting diodes (LEDs), the EBIC analysis can provide information about the
resistivity of the core and the shell by cleaving the structure and exposing its section to the
electron beam, thus mapping the electrical activity of the junction. Moreover, this technique
allows to visualize the electrical activity along the axial profile of single NWs, to evaluate the
electrical homogeneities of arrays and possibly to measure the doping levels as well as the
diffusion length and the average life-time of the carriers.® These information are very
important to perform a proper characterization of NW structures suitable for the fabrication
of PV cells, thus making EBIC an important tool of investigation for the purpose of this thesis.
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ANNEX 2: Numerical simulations of the VLS growth
process

in collaboration with A. Danescu
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1 Introduction

In order to clarify the experimental evidence of NW growth with different group III sources we
propose in the following quantitative estimates of the evolution of the liquid droplet and NW
parameters based on simplified models similar to those already proposed in [1].

We implement and discuss predictions of two growth models :

e Model 1 : a simplified version taking into account the amount of material feeding the liquid
droplet under the assumption of constant NW radius and

e Model 2 : a more complex version that account for variable NW radius.

The physics of VLS nanowire growth can be summarized as follows : external fixed fluxes of group
IIT and group V atoms feed the liquid droplet through the so-called “direct flues” for which the
amount of matter is proportional to the area of the projected surface of the droplet on the normal
plane to the flux direction. It is commonly accepted that no other sources (diffusion, etc.) of group
V adatoms are involved in the growth process at the growth temperature. Moreover, at growth
conditions the group III adatoms attachment is very close to 1 so that diffusion on the substrate
and diffusion along the NW facets should be also accounted for. Incorporation in the droplet of
different quantities of group III and V adatoms leads to an evolution of its concentration. When



the group V saturation threshold in the droplet exceeds a given value, a solid III-V mono-layer
crystallizes at the LS interface. As this mono-layer needs the same amount of group III and group
V atoms the concentration is the droplet drops at a level lower that the saturation limit. Amount of
material not concerned by the solidification process but incorporated in the liquid droplet modifies
the droplet volume so that for simplicity in Model I we shall assume that: (a) the NW radius
is fixed, (b) the droplet is pinned at the triple point and (c) the geometry of the triple line has
rotational symmetry. Under this assumptions crystallization process modifies the droplet volume
and wetting angle at the triple point during growth.

This brief qualitative description can be formalized as a system of nonlinear ordinary differential
equations (ODE) relating the amount of group V and IIT adatoms, diffusion lengths, droplet radius,
droplet concentration and NW length accompanied by a set of inequalities involving the droplet
saturation condition and admissible weeding angles. To investigate quantitative and qualitative
features of this system of ODE one will use time-discretization and numerical approximation
algorithms. To simplify the presentation we shall describe further the discrete algorithm, involving
the modifications of various parameters of the process in an infinitesimal time interval (¢,t+ At).

We start with Model 1 and discuss its qualitative features, the identification procedure of the model
parameters and its quantitative predictions. Guided by the experimental evidence we extend it to
Model 2 that takes into account time-dependent NW radius and wetting angle lower and upper
bounds allowing for the predition of ZB and/or WZ GaAs structure.

2 Model with fixed NW radius (Model 1)

2.1 Preliminaries

Area exposed to the direct flux Let ag, and aass denote the angles formed by sources of
group V and III elements respectively with the normal to the substrate plane and let r denote the
NW radius. At fixed droplet radius R and wetting angle (3, the orientation of adatom sources (111
or V) determine the droplet area which is exposed to the direct flux, a result given in [2]. The
explicit formula is :

S(a, B,r) =
m ifR(f)=r/cosa and [B>=7/2,

2 sina sin 8

2 2
T . { cos - . . sin“f — cos“a
(— — arcsm( - 6) — cosf/sin? B — cos?a + cosa sin?Barcsin )
sina

2. it R(B)<r/cosa and p=7/2, (1)
msin?fB if R(B) >r/sina and B<7/2,

(COSO( sin2ﬁ<% + arcsin( tan3 ) ) — cosf/sin?B — cos?a + arcsin

sina

sin’f — cos’a
tano

it R(f)<r/sine and p<m/2.

and the graph of the function S(a, 3, 30) is illustrated below.
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Figure 1. Capture surface as a function of source position (horizontal coordinate) and droplet heigth
(vertical coordinate) for r =30 nm. In black the curves representing the boundaries of various cases in (1).

The three section of interest in this graph are the vertical sections at a = 9.32°, a = 27.89° and
a=40.99°. These three section are prsented below :
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Figure 2. Surface of capture 5(9.32, h, 30) as a function of the droplet height.
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Figure 3. Surface of capture S(27.89, h, 30) as a function of the droplet height.

5000 -
4000 F

2000

] 80 100

o
(=N g

Figure 4. Surface of capture 5(40.99, h, 30) as a function of the droplet height.

Ga and As fluxes The group III adatoms flux, further denoted ggaa,is fixed at a value that pro-
vides a layer-by-layer vertical growth velocity of 0.5 ML /min which, by assuming full attachement,
correspond to a “vertical” flux

gGa=3.1325 (adatoms - s~ nm~?), @

The value corresponding to the flux for the element V adatoms can be computed using and gives
for the vertical flux

qas=15.1789 (adatoms - s~ 1 - nm~2). (3)

Droplet saturation condition and amont of species in the droplet If V denotes the droplet
volume and ¢ denotes the As concentration in the droplet, defined as ¢ = Nas/(Nas+ Nga), then
the amount of As adatons and Ga adatoms can be computed straightforward by using molar mass
and mass density for each species and the Avogadro number (N4). Indeed, we have successively

V=Vas+Vga= mAS+ MGa _

pas  pca  Napas Napca

MasNas | McalNGa Mas Mga (1
s Mook, (e | Mes (1))

+ —_—
Napas Napga

which gives

-1
NASZV< Mas + Mga <l_1>> , NGa:NAs<%_1)- (4)

Napas Napgal\c



2.2 Computation procedure

Let us assume that at time ¢ : the droplet volume V'(¢), the droplet radius R(t), the wetting angle
B(t), the droplet concentration ¢(t) and the nanowire length L(t) are known.

1. Compute the of adatoms feeding the droplet:

In a small time interval At there are three contributions for the quantity of Ga that feeds
the droplet :

a) diffusion on the substrate ; if A\g denotes the diffusion length of the Ga atoms on
the SiOg substrate the amount of Ga able to feed the droplet is, per unit time

Qs=7((r+Xs)*>—7r?) qca (5)

This contribution exists as long as the length of the NW is lower than the diffusion
length Anw, since otherwise adatoms from the substrate cannot reach the triple
point.

b) diffusion on the NW walls: this contribution is proportional to the “exposed area
of the NW surface, which is simply

@Nw = 2r min (/\NVV; L) qcatan ags, (6)
per unit time, where the minimum function accounts for situations when L < Anwy.

c¢) direct incorporation in the droplet: this quantity can be computed using formula
(1) and gives, per unit time :

Qp=S(aca, B,7(t), R(t) —E2_ (7)

COS O Ga

Thus the total amount of Ga adatoms feeding the droplet in an interval At is

Qca=(Qs+ Qnw + Qp) At. (8)

In a similar way the amount of As adatoms is straightforward given by
QAS = S(OéAS, ﬂa T(t)a R(t))quAt (9)

2. Compute the droplet concentration and amount of adatoms available for the
solidification :
In the time-interval (¢, ¢+ At) the amount of Ga and As in the droplet increase from Nag
and Ng, given by relation (4) to

NAS(t + At) = NAs(t) + QAS NGa(t + At) - NGa(t) + QGa (10)



so that the concentration becomes

B Nas(t + At)
clt+At) = NGa(tJrﬁt)JrNAs(tJrAt)' (11)

If c(t + At) exceeds the saturation threshold then : (i) a certain amount of Ga and As
adatoms will form the solid phase at the interface between the NW and the droplet and (ii)
the droplet concentration remain at the saturation threshold. To compute the amount of
material that contributes to solidification we look for the same amount of both species,
further denoted @ such that

Nas(t+At) - Q R Nas(t + At) B
Nowl T A) T Nt t A0 =20 ¢ ™ N aranT Nairap Al (12)
which gives
c(t+ At) —¢*

(13)

— )
Q=Nast+ At A A =20

. Update the NW length:

Assuming a constant NW radius, the amount of ) adatoms of Ga and @ adatoms of As
will form a GaAs crystal (whose lattice parametr is known) over a surface of area 7r2. Thus
the NW length will increase by an amount of

L(t—i—At):L(t)—i—Q%. (14)

Obviously, the seond term above is not always an integer multiple of the lattice parameter,
but this is essentially an artefact due to time discretization scheme, so that it has no
particular incidence on the final result of the simulation.

. Update the droplet radius and wetting angle:

Solidification of a certain amount of Ga and As, imposed by the concentration threshold,
modifies at (¢ + At) the amouint of Ga and As adatoms in the liquid droplet. After
solidifcation the droplet contains Nas(t + At) — @ adatoms of As and Nga(t + At) — Q
adatoms of Ga. The corresponding total volume of the droplet can be computed using
relations (4.1) with ¢* instead of ¢ and Nag(t + At) in the left-hand side, i.e.

M, M, 1
V(t—l—At):NAs(t-f-At)(NAzsAs—l—NA;;Z&<E—1>>. (15)

Since the NW radius is fixed, the volume V(¢ + At) determine the droplet radius R(t + At)
by using the inverse function of the two-branch relation V(R) given by

Vii(R) = =(R— VRZ—12)*(2R+ VRZ—12) if B>7/2
V(R) 3 (16)
Vap(R) = (R +VR? =17’ (2R~ VRZ =77) if f<m /2.



Then the wetting angle can be updated by using elementry geometry once since the droplet
radius is known. We obtain :

3
Bt+At) = I+arccos(r/R)ifV(t+At)>27; )

2
. . 273
B(t+ At) = arcsin(r/R)if V(t+ At) < 7

(17)

At the end of these update steps we have compute R(t+ At), L(t + At), S(t + At) and V (¢t + At)
so we can proceed to the next time-step itteration.

2.3 Initial conditions

In our simulations the positions of Ga and As sources with respect to the normal to the substrate
surface were computed from the geometry of the MBE reactor. We have considered

aGas =27.89°, aga7=9.32° aas=40.99°. (18)

The value of the critical concentration threshold was taken from the litterature at ¢=0.026. The
diffusion length for Ga adatoms on SiOs is fixed to Ag = 100nm while the diffusion length of Ga
atoms on GaAs is reported in the litterature in the range (1pm, 1.5 um). Typical simulation

started with a half-sphere volume of the droplet, i.e. R(0)=r=30nm and V(0) :%Trgnrn?’ =56540
nm? which gives obviously $(0) = m /2. The saturation condition is fixed at a concentration
thresohld ¢(0) = ¢* and initial length of the NW was fixed at L(0)=0.

2.4 Remarks

Not explicitly stated above there are several assumption concerning the limitations of the model.

a) One of them concerns the NW density : at average dnesity lower the ~2\g the model can
be applied. Avove this limit there is a certain amount of Ga which has to be shared between
several droplets, so that the initial contribution of the substrate diffusion decrease. As we
shall show in the following this has some impact only on the transitory regime (explained
below). The NW density has also some impact on the adatoms arriving at the triple point
via the NW facets, due to a shadowing effect.

b) From a technical point of view an additional test should stop the computation if the droplet
becomes to small or to large.

c) For technical reasons, the description using V(R), which is a function containing two
branches is not the best choice, and is handled with some additional computational cost.
The best choice is to use the one-to-one correspondance between the droplet height and
its volume. Once the height of the droplet is known the radius can be uniquely deter-
mined from simple geometric arguments. Using this description we have

r2 4 h? T . [ R?—1r?
R=—F—, 5—5+arcsm<hQ—+T2). (19)

d) Desorbtion along the substrate and along the facets of the NW is not explicitly considered
here but can be incorporated easily. In the above model this is equivalent of changing the
diffusion lengths Ag and Anw.



3 Numerical results

A typical result obtained with : the initial data given in subsection 2.3, a time step of At =0.5s
over a time interval of T'=50min is represented in Fig. 5.
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Figure 5. Typical evolution of various parameters (R, 3, L, ¢) as well the capture surfaces for Ga and As
during the NW growth. The value of the concentration is c¢(¢+ At) before crystallization of the solid phase
(thus always ¢ > ¢*). The two curves on the Ga surface graph are proportional to tha amount of Ga adatons
entering the droplet via diffusion (upper curve) and direct flux (lower curve).

It is interesting to notice the following behavior : we recognize a transient growth regime up to
t =40’ which becomes asymptotic stationnary. As expected at t ~ 11 min., when the NW length
equals L =1 pm (which is exactly the input value for Axw) the adatoms arriving at the triple point
via diffusion on the substrate are lost. This can be recognized as a discontinuity in the amount of
Ga adatoms and leads to a decrease of the droplet size and consequently, a reduction of the amount
of As adatoms by direct flux. After this point the system evolves toward a stationnary evolution
(result predicted also by simple models of Dubrovskii [3]: this regime is characrerized by a constant
longitudinal velocity obtained as an exact balance between the quantities of As and Ga adatoms.
As can be noticed below this regime is (almost) independent on the initial conditions and depends
only on the flux ratio between the group V and III elements as weel as the positions ag, and aas
of Ga and As sources respectively.

Indeed, stationnary growth condition can be obtained from the equality between the amount of
Ga and As adatoms. In above notation the grotwh is stationnary iff

2r A\ANw Sin aga + S(OéGa, Ba ’I“(t)) :COSOKGa% (20)

S(aas, B,r(t)) 4Ga

which represents the “balance” of Ga and As adatoms. This formula provides important informa-
tions about the stationnary regime and guide the identification strategy.



3.1 Identification strategy

From the experimental data the longitudinal growth velocity can be measured so that, the amount
of As adatoms needed can be easily computed. As at fixed NW radius r and As source position
aas the surface of the droplet exposed to the As flux is known, the above condition select a unique
asymptotic droplet radius R and wetting angle 3.

Using the Gab experimental data we find a longitudinal growth velocity
v=1.9066 nm / sec.

which represents V = 5390 nm?/sec or equivalent an amount of As adatoms given by 119350
atoms/sec. This gives a projected surface of 119350

151789 — (862 nm? which, by using the result in Fig.
3, gives in the stationnary regime :

h=90nm, R=50nm, [=143°

in agreement with the numerical results in Fig. 5. From relation (20) we can compute the diffusion
length on the NW facets which gives exactly this stationnary regime, and we obtain

4.2786 - S(90, 41°) — 5(90, 27°)

—91
97 sin(27°) 918mm

Lnp=

which is close to values reported by Schroth et al. [4]. With this diffusion length the longitudinal
velocity for Gab is exact. The result of the simulation is presented in Fig. 6.
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Figure 6. Simulation results (continuous blue curve) obtained with a diffusion length Axw = 918nm and
As =100 nm for At=0.5 sec and 9600 time steps. The longitudinal velocity, the asymptotic weeting angle
and droplet radius are correct but the starting point in the stationnary regime is to high.



To improve the previous simulation one has to decrease the diffusion length Ag which in conse-
quence, decrease the NW length at the beginning of the stationnary regime. The results obtained
with Ag=65nm are illustrated below in Fig. 7.
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Figure 7. With Ag =65 nm the experimental data (red circles) for Gab source are fitted by the simulation
results (blue continuous curves).

One can show that low diffusion length Ag leads to a decrease of the simulation results keeping the
longitudinal velocity constant. The effect of the initial volume on the simulation results should be
further investigated.

3.2 Application to Ga7 source

Using the best values obtained from stationnary data one can simulate the NW evolution using
the Ga7 source. The result is illustrated in Fig. 8. Changing the source we still notice a transitory
regime followed by a stationnary evolution of the NW length. While the transitory regime is well
reproduced the constant velocity growth in the stationnary regime predicted by the simulation is
to low.
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Figure 8. Simlation results obtained by using As =65 nm and Axw = 918 nm (continuous blue line) and
experimental data (red circles).
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Abstract

The objective of this thesis is to achieve monolithical integration of Alp.,GaosAs-based
nanowires (NWs) on Si substrates by molecular beam epitaxy via the self-assisted vapour-
liquid-solid (VLS) method and develop a NWs-based tandem solar cell (TSC).

In order to fulfil this purpose, we firstly focused our attention on the growth of GaAs NWs
this being a key-step for the development of p-GaAs/p.i.n-Alo.2GaosAs core/shell NWs, which
are expected to constitute the top cell of the TSC. We have shown, in particular, the
influence of the incidence angle of the Ga flux on the GaAs NW growth kinetic. A theoretical
model and numerical simulations were performed to explain these experimental results.

Subsequently, we employed the skills acquired to grow p-GaAs/p.i.n-Alo2GaosAs
core/shell NWs on epi-ready Si substrates. EBIC characterizations performed on these NWs
have shown that they are potential building blocks for a photovoltaic cell. We then
committed to growing them on patterned Si substrates so as to obtain regular arrays of
NWs. We have developed a protocol, based on a thermal pre-treatment, which allows
obtaining high vertical yields of such NWs (80-90 %) on patterned Si substrates (on a surface
of 0.9 x 0.9 mm?).

Finally, we dedicated part of our work to define the optimal fabrication process for the
TSC, focusing our attention to the development of the TSC tunnel junction, the NW
encapsulation and the top contacting of the NWs.

KEY WORDS: AlGaAs-based nanowires, core/shell structures, radial junction, EBIC,
ordered arrays, self- catalysed, heterogeneous integration, photovoltaics, tandem solar cell



Résumé

L'objectif de cette thése est de réaliser l'intégration monolithique de nanofils (NFs) a base
de I'alliage Alo2GaosAs sur des substrats de Si par épitaxie par jets moléculaires via la
méthode vapeur-liquide-solide (VLS) auto-assistée et de développer une cellule solaire
tandem (TSC) a base de ces NFs.

Pour atteindre cet objectif, nous avons tout d'abord étudié la croissance de NFs GaAs,
étape clé pour le développement des NFs p-GaAs/p.i.n-Alp2Ga osAs coeur/coquille, qui
devraient constituer la cellule supérieure de la TSC. Nous avons montré, en particulier,
I'influence de I'angle d'incidence du flux de Ga sur la cinétique de croissance des NFs GaAs.
Un modele théorique et des simulations numériques ont été réalisées pour expliquer ces
résultats expérimentaux.

Nous avons ensuite utilisé le savoir-faire acquis pour faire croitre des NFs p-GaAs/p.i.n-
Alg,»GagsAs coeur/coquille sur des substrats de Si préts pour I'emploi. Les caractérisations
EBIC réalisées sur ces NFs ont montré qu'ils sont des candidats potentiels pour la réalisation
d’une cellule photovoltaique. Nous avons ensuite fait croitre ces NFs sur des substrats de Si
patternés afin d'obtenir des réseaux réguliers de ces NFs. Nous avons développé un
protocole, basé sur un pré-traitement thermique, qui permet d'obtenir des rendements
élevés de NFs verticaux (80-90 %) sur une surface patternée de 0,9 x 0,9 mm?.

Enfin, nous avons consacré une partie de notre travail a définir le procédé de fabrication
optimal pour la TSC, en concentrant notre attention sur le développement de la jonction
tunnel de la TSC, I'encapsulation des NFs et le contact électrique supérieur du réseau de NFs.

MOT-CLEFS : Nanofils a base d'AlGaAs, structures coeur/coquille, jonction radiale, EBIC,
réseaux ordonnés, intégration hétérogene, photovoltaique, cellule solaire en tandem.
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